资料介绍
The TLK1501 is a member of the transceiver family of multigigabit transceivers used in ultrahigh-speed
bidirectional point-to-point data transmission systems. The TLK1501 supports an effective serial interface
speed of 0.6 Gbps to 1.5 Gbps, providing up to 1.2 Gbps of data bandwidth. The TLK1501 is pin-for-pin
compatible with the TLK2500. The TLK1501 is both pin-for-pin compatible with and functionally identical to the
TLK2501, a 1.6 to 2.5 Gbps transceiver, providing a wide range of performance solutions with no required board
layout changes.
The primary application of this chip is to provide very high-speed I/O data channels for point-to-point baseband
data transmission over controlled impedance media of approximately 50 Ω. The transmission media can be
printed-circuit board, copper cables, or fiber-optic cable. The maximum rate and distance of data transfer is
dependent upon the attenuation characteristics of the media and the noise coupling to the environment.
This device can also be used to replace parallel data transmission architectures by providing a reduction in the
number of traces, connector terminals, and transmit/receive terminals. Parallel data loaded into the transmitter
is delivered to the receiver over a serial channel, which can be a coaxial copper cable, a controlled impedance
backplane, or an optical link. It is then reconstructed into its original parallel format. It offers significant power
and cost savings over current solutions, as well as scalability for higher data rate in the future.
The TLK1501 performs data conversion parallel-to-serial and serial-to-parallel. The clock extraction functions
as a physical layer interface device. The serial transceiver interface operates at a maximum speed of 1.5 Gbps.
The transmitter latches 16-bit parallel data at a rate based on the supplied reference clock (GTX_CLK). The
16-bit parallel data is internally encoded into 20 bits using an 8-bit/10-bit (8B/10B) encoding format. The
resulting 20-bit word is then transmitted differentially at 20 times the reference clock (GTX_CLK) rate. The
receiver section performs the serial-to-parallel conversion on the input data, synchronizing the resulting 20-bit
wide parallel data to the extracted reference clock (RX_CLK). It then decodes the 20 bit wide data using
8-bit/10-bit decoding format resulting in 16 bits of parallel data at the receive data terminals (RXD0-15). The
outcome is an effective data payload of 480 Mbps to 1.2 Gbps (16 bits data x the GTX_CLK frequency).
The TLK1501 is housed in a high performance, thermally enhanced, 64-pin VQFP PowerPAD package. Use
of the PowerPAD package does not require any special considerations except to note that the PowerPAD, which
is an exposed die pad on the bottom of the device, is a metallic thermal and electrical conductor. It is
recommended that the TLK1501 PowerPAD be soldered to the thermal land on the board. All ac performance
specifications in this data sheet are measured with the PowerPAD soldered to the test board.
bidirectional point-to-point data transmission systems. The TLK1501 supports an effective serial interface
speed of 0.6 Gbps to 1.5 Gbps, providing up to 1.2 Gbps of data bandwidth. The TLK1501 is pin-for-pin
compatible with the TLK2500. The TLK1501 is both pin-for-pin compatible with and functionally identical to the
TLK2501, a 1.6 to 2.5 Gbps transceiver, providing a wide range of performance solutions with no required board
layout changes.
The primary application of this chip is to provide very high-speed I/O data channels for point-to-point baseband
data transmission over controlled impedance media of approximately 50 Ω. The transmission media can be
printed-circuit board, copper cables, or fiber-optic cable. The maximum rate and distance of data transfer is
dependent upon the attenuation characteristics of the media and the noise coupling to the environment.
This device can also be used to replace parallel data transmission architectures by providing a reduction in the
number of traces, connector terminals, and transmit/receive terminals. Parallel data loaded into the transmitter
is delivered to the receiver over a serial channel, which can be a coaxial copper cable, a controlled impedance
backplane, or an optical link. It is then reconstructed into its original parallel format. It offers significant power
and cost savings over current solutions, as well as scalability for higher data rate in the future.
The TLK1501 performs data conversion parallel-to-serial and serial-to-parallel. The clock extraction functions
as a physical layer interface device. The serial transceiver interface operates at a maximum speed of 1.5 Gbps.
The transmitter latches 16-bit parallel data at a rate based on the supplied reference clock (GTX_CLK). The
16-bit parallel data is internally encoded into 20 bits using an 8-bit/10-bit (8B/10B) encoding format. The
resulting 20-bit word is then transmitted differentially at 20 times the reference clock (GTX_CLK) rate. The
receiver section performs the serial-to-parallel conversion on the input data, synchronizing the resulting 20-bit
wide parallel data to the extracted reference clock (RX_CLK). It then decodes the 20 bit wide data using
8-bit/10-bit decoding format resulting in 16 bits of parallel data at the receive data terminals (RXD0-15). The
outcome is an effective data payload of 480 Mbps to 1.2 Gbps (16 bits data x the GTX_CLK frequency).
The TLK1501 is housed in a high performance, thermally enhanced, 64-pin VQFP PowerPAD package. Use
of the PowerPAD package does not require any special considerations except to note that the PowerPAD, which
is an exposed die pad on the bottom of the device, is a metallic thermal and electrical conductor. It is
recommended that the TLK1501 PowerPAD be soldered to the thermal land on the board. All ac performance
specifications in this data sheet are measured with the PowerPAD soldered to the test board.
下载该资料的人也在下载
下载该资料的人还在阅读
更多 >
- DS10CP152 1.5Gbps 2X2 LVDS交叉点开关数据表
- DS10CP154A 1.5Gbps 4x4 LVDS交叉点开关数据表
- TLK1501 0.6至1.5 GBPS收发器数据表
- TLK2501 1.5至2.5 GBPS收发器数据表
- TLK3138,pdf(Dual, XAUI Transce
- TLK3118,pdf(Redundant XAUI Tra
- TLK3114SC,pdf(10-Gbps XAUI Tra
- TLK4201EA,pdf(4.25 Gbps Cable
- TLK1101E,pdf(11.3-Gbps Cable a
- TLK6002 pdf datasheet
- F0510203/F0510203B pdf datasheet (1.5Gbps Laser Diode Driver
- tlk3134 pdf,tlk3134 datasheet
- TLK3134 pdf,TLK3134 datasheet
- TLK2501 pdf datasheet(1.5至2.5G
- TLK2521 pdf datasheet(1.0-2.5G
- eSATA接口静电保护方案及测试标准 220次阅读
- 可调节1.5A降压1.5 MHz开关稳压器电路图 603次阅读
- 国产1.5Gbps高速接口芯片概述 1491次阅读
- 分享一个快速阅读datasheet的方法 2311次阅读
- USB 4 支援的隧道协议 4375次阅读
- 单芯片100 Gbps相干接收器的设计方案 1624次阅读
- PFC控制器CS1501的主要特性及典型应用电路 3694次阅读
- USB4介绍的详细资料分析 3228次阅读
- 4.8Gbps IP安全处理器BCM5841的性能特点及应用范围 1144次阅读
- TCD1501C型CCD图像传感器的原理、性能特点及驱动电路的设计 6349次阅读
- 微雪电子1.5寸RGB OLED模块介绍le 2123次阅读
- 如何阅读Datasheet,是作为电子工程师的必备技能! 7837次阅读
- AD9如何简单快速的制作出原理图符号 7441次阅读
- 维珍宽带内容及特点介绍 3679次阅读
- MAX24011 2.5Gbps跨阻放大器 2177次阅读
下载排行
本周
- 1TC358743XBG评估板参考手册
- 1.36 MB | 330次下载 | 免费
- 2开关电源基础知识
- 5.73 MB | 11次下载 | 免费
- 3嵌入式linux-聊天程序设计
- 0.60 MB | 3次下载 | 免费
- 4DIY动手组装LED电子显示屏
- 0.98 MB | 3次下载 | 免费
- 5基于FPGA的C8051F单片机开发板设计
- 0.70 MB | 2次下载 | 免费
- 651单片机窗帘控制器仿真程序
- 1.93 MB | 2次下载 | 免费
- 751单片机PM2.5检测系统程序
- 0.83 MB | 2次下载 | 免费
- 8基于51单片机的RGB调色灯程序仿真
- 0.86 MB | 2次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234315次下载 | 免费
- 2555集成电路应用800例(新编版)
- 0.00 MB | 33566次下载 | 免费
- 3接口电路图大全
- 未知 | 30323次下载 | 免费
- 4开关电源设计实例指南
- 未知 | 21549次下载 | 免费
- 5电气工程师手册免费下载(新编第二版pdf电子书)
- 0.00 MB | 15349次下载 | 免费
- 6数字电路基础pdf(下载)
- 未知 | 13750次下载 | 免费
- 7电子制作实例集锦 下载
- 未知 | 8113次下载 | 免费
- 8《LED驱动电路设计》 温德尔著
- 0.00 MB | 6656次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935054次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537798次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420027次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234315次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233046次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191186次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183279次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138040次下载 | 免费
评论
查看更多