资料介绍
In the 1980s and early 1990s, a great deal of research effort (both industrial
and academic) was expended on the design and implementation of hardware
neurocomputers [5, 6, 7, 8]. But, on the whole, most efforts may be judged
to have been unsuccessful: at no time have have hardware neurocomputers
been in wide use; indeed, the entire field was largely moribund by the end the
1990s. This lack of success may be largely attributed to the fact that earlier
work was almost entirely based on ASIC technology but was never sufficiently
developed or competetive enough to justify large-scale adoption; gate-arrays
of the period mentioned were never large enough nor fast enough for serious
neural-network applications.1 Nevertheless, the current literature shows that
ASIC neurocomputers appear to be making some sort of a comeback [1, 2, 3];
we shall argue below that these efforts are destined to fail for exactly the same
reasons that earlier ones did. On the other hand, the capacity and performance
of current FPGAs are such that they present a much more realistic alternative.
We shall in what follows give more detailed arguments to support these claims.
The chapter is organized as follows. Section 2 is a review of the fundamentals
of neural networks; still, it is expected that most readers of the book will already be familiar with these. Section 3 briefly contrasts ASIC-neurocomputers
with FPGA-neurocomputers, with the aim of presenting a clear case for the
former; a more significant aspects of this argument will be found in [18]. One
of the most repeated arguments for implementing neural networks in hardware
is the parallelism that the underlying models possess. Section 4 is a short section
that reviews this. In Section 5 we briefly describe the realization of a
state-of-the art FPGA device. The objective there is to be able to put into a
concrete context certain following discussions and to be able to give grounded
discussions of what can or cannot be achieved with current FPGAs. Section
6 deals with certain aspects of computer arithmetic that are relevant to neuralnetwork implementations. Much of this is straightforward, and our main aim
is to highlight certain subtle aspects. Section 7 nominally deals with activation
functions, but is actually mostly devoted to the sigmoid function. There
are two main reasons for this choice: first, the chapter contains a significant
contribution to the implementation of elementary or near-elementary activation
functions, the nature of which contribution is not limited to the sigmoid
function; second, the sigmoid function is the most important activation function
for neural networks. In Section 8, we very briefly address an important
issue — performance evaluation. Our goal here is simple and can be stated
quite succintly: as far as performance-evaluation goes, neurocomputer architecture
continues to languish in the “Dark Ages", and this needs to change. A
final section summarises the main points made in chapter and also serves as a
brief introduction to subsequent chapters in the book.
- 基于FPGA的RBF神经网络的硬件实现
- 人工神经网络的原理及仿真实例 0次下载
- 基于FPGA的神经网络硬件实现方法 37次下载
- 基于进化计算的神经网络设计与实现 4次下载
- 基于FPGA的SIMD卷积神经网络加速器 24次下载
- 人工神经网络控制 13次下载
- 人工智能-BP神经网络算法的简单实现 12次下载
- 基于FPGA的RBF神经网络硬件实现 26次下载
- MATLAB实现卷积神经网络CNN的源代码 16次下载
- 神经网络图像压缩算法的FPGA实现技术研究论文免费下载 11次下载
- 基于FPGA集群的NEST脉冲神经网络仿真器 10次下载
- 如何使用FPGA实现BP神经网络的仿真线设计 12次下载
- 如何使用FPGA实现神经网络硬件的设计方法 6次下载
- 神经网络与神经网络控制的学习课件免费下载 7次下载
- 神经网络图像压缩算法的FPGA实现技术研究 19次下载
- 基于FPGA的脉冲神经网络模型应用探索 259次阅读
- 递归神经网络的实现方法 186次阅读
- BP神经网络和卷积神经网络的关系 530次阅读
- BP神经网络和人工神经网络的区别 342次阅读
- 基于MATLAB的BP神经网络实现方式 240次阅读
- 全连接前馈神经网络与前馈神经网络的比较 7427次阅读
- 深度神经网络与基本神经网络的区别 307次阅读
- 卷积神经网络与循环神经网络的区别 878次阅读
- 神经网络架构有哪些 324次阅读
- 如何使用Numpy搭建神经网络 3500次阅读
- 一种基于FPGA的神经网络硬件实现方案详解 1.3w次阅读
- BP神经网络概述 4.4w次阅读
- 基于Numpy实现神经网络:如何加入和调整dropout? 7491次阅读
- 基于Numpy实现同态加密神经网络 7774次阅读
- 基于FPGA的神经网络算法的设计 5524次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1491次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 95次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 11次下载 | 免费
- 6100W短波放大电路图
- 0.05 MB | 4次下载 | 3 积分
- 7基于单片机和 SG3525的程控开关电源设计
- 0.23 MB | 4次下载 | 免费
- 8基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30320次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537793次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233046次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多