资料介绍
即使技术和分配方式在迅速发生变化,但是,电缆作为数据分配通道,始终保持着重要地位。
新技术在现有电缆网络上已实现分层,今天我们重点介绍这一技术演进的其中一方面——功率放大器 (PA) 数字预失真 (DPD)。
功率放大器 (PA) 数字预失真 (DPD),这是许多从事蜂窝系统网络研发工作的人士将会熟悉的一个术语。将该技术迁移到电缆能够带来明显的功效和性能提升,同时也带来了巨大的挑战。
了解要求
功率放大器在非线性区域工作时,其输出将失真。这一失真可能会影响带内性能,还可能导致无用信号溢出到邻道。溢出效应在无线蜂窝应用中特别重要,因此对邻道泄漏比 (ACLR) 有严格的规定和控制。突出的控制技术之一是在信号到达功率放大器之前对其进行数字整形或预失真,从而消除功率放大器中的非线性。
电缆环境则完全不同。首先,可将其视为封闭环境。电缆中发生的情况不会扩展到电缆外!运营商拥有并控制整个频谱。带外 (OOB)失真并不是关注重点,带内失真才是至关重要的。服务提供商必须确保最高质量的带内传输通道,以便能够利用最大的数据吞吐量。其中一个方法是使电缆功率放大器严格运行在线性区域内。采用这种工作模式的代价是功效极差。
图1. 电缆功率放大器驱动器的功效
图1概要显示了典型的电缆应用。尽管该系统功耗近80 W,但仅传送了2.8W信号功率。功率放大器是功效极低的A类架构。最大瞬时峰值效率可以计算为50%(当信号包络最大时,假定为电感负载)。如果功率放大器完全在线性区域工作,则考虑电缆信号的极高峰均比(通常为14 dB)意味着放大器需要比信号压缩开始时平均低14 dB的工作条件,从而确保即使在信号的峰值处也不会发生信号压缩。回退与放大器工作效率直接相关。当放大器回退14 dB以适应各种电缆信号时,工作效率将降低10–14/10。因此,工作效率从理论上的最大值50%降低到10–14/10 × 50% = 2%。图2概要显示了上述情况。
图2. 高峰均比推动回退工作模式并使效率大幅降低
总而言之,功效是主要问题。损失功率会影响成本,但同样重要的是,它还消耗了电缆分配系统中的稀缺资源。电缆运营商增加了更多功能和服务,因此需要进行更多的处理,而处理所需的功率可能会受现有功率预算的限制。如果能从低效功率放大器中设法获取浪费的功耗,那么可以将其重新分配给这些新功能。
针对功率放大器低效提出的解决方案是数字预失真。这是整个无线蜂窝行业普遍采用的一种方法。数字预失真允许用户在更高效但非线性更明显的区域中运行功率放大器,然后先预先校正数字域中的失真,再将数据发送到功率放大器。数字预失真的本质是在数据到达功率放大器之前对其进行整形,以抵消功率放大器产生的失真,从而扩大功率放大器的线性范围,如图3所示。这一扩大后的线性范围可用于支持更高质量的处理,提供较低的调制误差率 (MER),1或者允许功率放大器以更低偏置设置运行,从而节省功耗。尽管数字预失真已广泛应用于无线蜂窝基础设施,但在电缆环境中实施数字预失真有独特而又有挑战性的要求。
图3. 数字预失真概述
如图4所示,电缆应用的实际工作效率约为3.5%!实施数字预失真可以降低系统的功率要求,由原来的80 W降低到61 W,节约19 W,节电率达到24%。每个功率放大器以前的功率要求为17.5 W,现在则下降到12.8 W。
图4. 通过数字预失真方案实现节能概述
实施挑战
数字预失真的价值不言而喻,但在电缆应用中实施时会面对许多独特挑战。因此,必须在现有资源范围内应对这些技术挑战。例如,解决方案本身必须是高效节能的,因为如果节省的电能转化为该解决方案的电源,则在优化功率放大器效率方面没有什么价值。同样地,数字处理资源需要适当,以便可以高效地驻留在当前的FPGA架构中。具有非标准硬件要求和广泛架构变化的超大型/复杂算法不太可能适应。
超宽带宽
电缆应用环境与无线蜂窝环境之间最显著的区别也许是操作带宽。在电缆中,约1.2 GHz的带宽要进行线性化。宽带宽挑战复杂的原因在于频谱从直流开始仅为54 MHz且信号带宽大于信道中心频率。必须牢记的是,功率放大器经驱动进入非线性工作区域后即可实现省电,这样虽然提高了效率,但代价是非线性产物也随之而来。数字预失真必须消除由功率放大器产生的非线性,尤其是那些折回带内的非线性成分。这就在电缆应用中构成了独特挑战。
图5.传统窄带中谐波失真项的说明
图5概要显示了我们可能期望的经过非线性放大级的传统窄带(本节稍后部分给出窄带的定义)上变频基带信号的宽带谐波失真项。非线性功率放大器输出通常通过幂级数表达式描述,比如具有以下形式的Volterra级数:
可将其理解为有记忆效应的Taylor幂级数的推广。值得注意的是,每个非线性项(k = 1,2, … , K)都会产生多个谐波失真(HD)产物。例如,五阶有3个谐波项:一次谐波、三次谐波和五次谐波。另外需要注意的是,谐波带宽是其阶次的倍数。例如,三阶谐波项的宽度是激励带宽的3倍。
在电缆中,谐波在频谱(从直流开始仅为54 MHz)上的位置对数字预失真构成了特殊挑战,而这一挑战与大信号带宽的关系并不大。所有非线性系统都会发生谐波失真。电缆数字预失真的重点是落在带内的谐波失真。从图5可以看出,在传统窄带应用中,重点将是三阶谐波和五阶谐波。尽管形成了其他谐波,但它们在目标频带外,可通过传统滤波消除。我们可以按照分数带宽来定义宽带应用和窄带应用,其中分数带宽的定义公式如下:
(fn = 最高频率,f1 = 最低频率,fc = 中心频率)。分数带宽超过1时,可将应用视为宽带应用。大多数蜂窝应用的分数带宽不超过0.5。因此,它们的谐波失真行为符合图6所示的特性。
图6.窄带简化;只需考虑一次谐波周围的产物
对于这样的窄带系统,只有一次谐波周围的带内失真需要通过数字预失真消除,因为采用带通滤波器可去除所有其他产物。另外还需注意的是,由于带内没有偶数阶产物,数字预失真只需处理奇数阶项。
在电缆应用中,我们近似认为fn ~1200 MHz,fl ~50 MHz,fc ~575 MHz,从而得出分数带宽为2。要确定需要校正的最低谐波失真阶次,可以使用以下公式:
(Kmin是要考虑的最低非线性阶次),或者用数字表示就是50 MHz×2 = 100Mhz,由于其小于1200 MHz,因此二阶谐波失真正好在工作频带内并且必须被校正。因此,如果决定在安全性和线性度极高的操作范围之外操作电缆功率放大器,则所得到的谐波失真将如图7所示。
图7.宽带电缆应用中宽带谐波失真的影响
相比只需要考虑奇数阶谐波的无线蜂窝应用,电缆应用中的偶数阶项和奇数阶项均在频带内,可产生多个重叠的失真区域。这在一定程度上会对任何数字预失真解决方案的复杂性和精密度 产生严重影响,因为算法必须通过简单的窄带假设。数字预失真解决方案必须适应谐波失真每个阶次的项。
在窄带系统中,偶数阶项可以被忽略,奇数阶在每个目标频带内产生1个项。电缆应用中的数字预失真必须考虑奇数阶和偶数阶谐波失真,并且还必须考虑到每个阶可能有多个重叠的带内元素。
谐波失真校正定位
考虑到传统窄带数字预失真解决方案的处理在复杂的基带处完成,我们主要关注对称位于载波周围的谐波失真。在宽带电缆系统中,尽管保持了位于一次谐波周围的那些项的对称性,但是这一对称性不再适用于更高阶次的谐波产物。
图8.宽带数字预失真复杂基带处理中频率偏移要求的注解
如图8所示,传统窄带数字预失真在复杂基带处完成。在这些实例中,仅一次谐波产物在频带范围内,因此其基带产物直接转换为RF。考虑宽带电缆数字预失真时,较高阶次的谐波失真必须是频率偏移,才能使上变频后的基带产物正确位于实际RF频谱中。
环路带宽限制
闭环数字预失真系统采用传输和观测路径。在理想化的模型中,两条路径都不会受到带宽限制,并且两者的宽度都足以通过所有数字预失真项。也就是说,它们足以通过带内项和带外项。
图9.无带宽限制的理想化数字预失真方案
图9概要显示了数字预失真一种数字预失真的实现。在理想情况下,从数字上变频器 (DUC)(通过数字预失真)到DAC乃至通过功率放大器的路径将没有带宽限制。同样地,观测路径上的ADC将对全带宽进行数字化(请注意,为了进行说明,我们展示2倍带宽的信号路径。在某些无线蜂窝应用中,可扩展到3至5倍的带宽)。理想方案是通过数字预失真产生带内项和带外项,从而完全消除功率放大器引入的失真。需要注意的是,为了准确消除失真,需要在目标信号的带宽之外创建项,这一点非常重要。
在实际方案中,信号路径具有带宽限制,数字预失真性能无法达到理想方案要求。
电缆应用中,带宽限制可能有多种来源
FPGA与DAC之间的JESD链路、DAC镜像抑制滤波器、功率放大器输入匹配。这些限制最显著的影响是带外性能。从图10所示的仿真可以看出,数字预失真无法校正带外失真。在电缆中,带外失真会造成带内性能下降,这一点特别重要,是我们需要考虑到的。信号路径中的带宽限制可以并且的确会影响带内性能。
电缆环境比较独特,运营商拥有整个频谱
下载该资料的人也在下载
下载该资料的人还在阅读
更多 >
- 功率放大器 (PA) 数字预失真 (DPD)的技术演进
- 功率放大器(PA)介绍
- 功率放大器如何选型
- PA功率放大器的基础知识
- ET/DPD技术及射频功率放大器测试方案讲义 45次下载
- D类音频功率放大器概述 56次下载
- 射频功率放大器(RF PA)的种类和结构资料下载
- 如何实现射频功率放大器的基带自适应预失真技术 68次下载
- 使用Multisim 9对OTL功率放大器仿真的详细资料详解 110次下载
- 用于射频功率放大器的预失真器 1次下载
- OFDM系统中功率放大器的预失真算法改进研究 32次下载
- 自适应数字预失真放大器的算法
- 高效率线性功率放大器设计
- 一种新的用于射频功率放大器的预失真器
- 高功率放大器非线性失真联合抑制方法
- 功率放大器的几种常见类型 1028次阅读
- 甲乙类功率放大器的特点 甲乙类功率放大器的最大效率为 2704次阅读
- 功率放大器的定义详解 858次阅读
- 功率放大器的基本介绍 938次阅读
- 功率放大器可以驱动什么(功率放大器驱动哪些负载可以用) 1177次阅读
- 使用RF PA线性化器优化功率放大器的预失真 2673次阅读
- 排除故障和微调数字预失真的完整指南 2150次阅读
- 功率放大器设计 5317次阅读
- 低频功率放大器工作原理详解 2446次阅读
- 射频功率放大器模块的设计与实现 4399次阅读
- 功率放大器原理 1.1w次阅读
- 常用的功率放大器芯片有哪些 9.5w次阅读
- 射频功率放大器电路图大全(五款射频功率放大器电路设计原理图详解) 12.1w次阅读
- 功率放大器的分类及其参数 1.8w次阅读
- 功率放大器选择时需要注意哪些指标? 7411次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1490次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 92次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 10次下载 | 免费
- 6基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
- 7蓝牙设备在嵌入式领域的广泛应用
- 0.63 MB | 3次下载 | 免费
- 89天练会电子电路识图
- 5.91 MB | 3次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30320次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537791次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233045次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多