资料介绍
引言
随着软硬件技术的不断发展,以及用户对产品安全性,可靠性的要求,嵌入式应用的开发难度与代码体积都在迅速增加,传统的基于文本的开发方式已经越来越难以满足这种高性能与快节奏研发的要求。
基于模型的设计方法利用Mathworks提供的一系列工具,可直接实现从设计理念到算法模型,再由模型自动生成嵌入式代码的高效开发流程。对于本例来说,在LPC2124芯片上实现无刷电机控制(BLDC),设计者无需考虑如何将电机状态的变换用C或汇编语言体现,仅需关注算法本身,将繁琐的代码生成工作交给计算机完成。这样可以大大缩短产品开发周期,显著提高工作效率。
1 原理分析
直流无刷电机的工作离不开电子开关电路,因此由电动机本体、转子位置传感器和电子开关电路3部分组成了直流无刷电机的控制系统,其结构框图如图1所示。直流电源通过开关电路向电动机定子绕组供电,位置传感器随时检测转子所处的位置,并根据位置信号来控制开关管的导通和截止,从而自动地控制哪些绕组通电、哪些绕组断电,实现了电子换相。
图1 无刷电机控制系统结构框图
下面以一个三相绕组的无刷电机为例,简要介绍其工作原理。图2为三相全桥式驱动电路原理图,对其采用二相通电的方式驱动,即有两个绕阻同时通电。图中包含6个晶体管、二极管组成的三相逆变电路,Ha、Hb、Hc为霍尔元件反馈的转子位置信号。控制电路会根据位置信号决定6路PWM信号的通断,进而使功率管导通或关断,使绕阻按一定顺序导通,驱动电机连续旋转。
当采用二相导通方式驱动电机时,功率管的导通或关断情况经过1/6周期(即60°)。在直流无刷电机的内部嵌有3个霍尔位置传感器,它们在空间上相差120°。由于电机的转子是永磁体,当它在转动的时候,其磁场将发生变化形成旋转磁场,每个霍尔传感器都会产生180°脉宽的输出信号。
图2 三相全桥式驱动电路原理图
假设当前功率管V1、V6导通,则电流从A相流入电机,从C相流出电机,由电流经绕阻产生的磁场方向为(A,C)。由A和C的合磁场产生的转矩使转子转动到AC位置。转子的转动使霍尔传感器的输出发生变化,控制电路会据此调整功率管的导通情况,将V6关断,V5导通。这时,电流从A相流入电机,从B相流出电机,经绕阻产生的磁场方向为(A,B)。由A和B的合磁场产生的转矩使转子转动到AB位置。同样,霍尔器件又会输出一个不同的值,控制电路作出相应的处理,完成一个完整的换相周期。
随着软硬件技术的不断发展,以及用户对产品安全性,可靠性的要求,嵌入式应用的开发难度与代码体积都在迅速增加,传统的基于文本的开发方式已经越来越难以满足这种高性能与快节奏研发的要求。
基于模型的设计方法利用Mathworks提供的一系列工具,可直接实现从设计理念到算法模型,再由模型自动生成嵌入式代码的高效开发流程。对于本例来说,在LPC2124芯片上实现无刷电机控制(BLDC),设计者无需考虑如何将电机状态的变换用C或汇编语言体现,仅需关注算法本身,将繁琐的代码生成工作交给计算机完成。这样可以大大缩短产品开发周期,显著提高工作效率。
1 原理分析
直流无刷电机的工作离不开电子开关电路,因此由电动机本体、转子位置传感器和电子开关电路3部分组成了直流无刷电机的控制系统,其结构框图如图1所示。直流电源通过开关电路向电动机定子绕组供电,位置传感器随时检测转子所处的位置,并根据位置信号来控制开关管的导通和截止,从而自动地控制哪些绕组通电、哪些绕组断电,实现了电子换相。
图1 无刷电机控制系统结构框图
下面以一个三相绕组的无刷电机为例,简要介绍其工作原理。图2为三相全桥式驱动电路原理图,对其采用二相通电的方式驱动,即有两个绕阻同时通电。图中包含6个晶体管、二极管组成的三相逆变电路,Ha、Hb、Hc为霍尔元件反馈的转子位置信号。控制电路会根据位置信号决定6路PWM信号的通断,进而使功率管导通或关断,使绕阻按一定顺序导通,驱动电机连续旋转。
当采用二相导通方式驱动电机时,功率管的导通或关断情况经过1/6周期(即60°)。在直流无刷电机的内部嵌有3个霍尔位置传感器,它们在空间上相差120°。由于电机的转子是永磁体,当它在转动的时候,其磁场将发生变化形成旋转磁场,每个霍尔传感器都会产生180°脉宽的输出信号。
图2 三相全桥式驱动电路原理图
假设当前功率管V1、V6导通,则电流从A相流入电机,从C相流出电机,由电流经绕阻产生的磁场方向为(A,C)。由A和C的合磁场产生的转矩使转子转动到AC位置。转子的转动使霍尔传感器的输出发生变化,控制电路会据此调整功率管的导通情况,将V6关断,V5导通。这时,电流从A相流入电机,从B相流出电机,经绕阻产生的磁场方向为(A,B)。由A和B的合磁场产生的转矩使转子转动到AB位置。同样,霍尔器件又会输出一个不同的值,控制电路作出相应的处理,完成一个完整的换相周期。
下载该资料的人也在下载
下载该资料的人还在阅读
更多 >
- 基于模型设计的永磁同步电机控制编译和代码生成
- 永磁同步电机的矢量控制策略(八)之仿真模型搭建与源代码
- 基于模糊优化的PID直流无刷电机控制研究
- 项目实战|基于STM32的无刷电机开环控制
- 直流无刷电机控制程序
- PIC16F877实现直流无刷电机的控制
- 平衡车控制之BLDC直流无刷电机控制
- 直流无刷电机控制原理
- 直流无刷电机控制综合实验总结
- 直流无刷电机控制器程序流程图
- MC33035在直流无刷电机控制中的应用
- 低成本的直流无刷电机控制方案设计与实现 54次下载
- 无刷电机控制器的热设计介绍和MOSFET功率损耗的计算详细说明 68次下载
- 无刷电机的基本概念和参数介绍及无刷电机在模型上的应用资料免费下载 107次下载
- 基于STM32的双闭控制直流无刷电机BLDC源代码 838次下载
- 无刷电机技术的优势与应用前景 574次阅读
- 直流无刷电机的控制方式有哪些 472次阅读
- 无刷电机是什么意思 无刷电机是交流还是直流 1w次阅读
- 无刷电机和永磁电机有什么区别 3789次阅读
- 无刷电机和普通电机的区别 3950次阅读
- 无刷电机和伺服电机有什么区别 2541次阅读
- 关于无刷电机和有刷电机的优缺点 2829次阅读
- 直流无刷电机如何控制正反转 2.3w次阅读
- 浅谈无刷电机控制器的原理及其构造 3.3w次阅读
- 航模的无刷电机与普通电机的区别在哪? 2.4w次阅读
- 无刷电机的变频器控制原理及解决方案 1.8w次阅读
- 电动车无刷电机原理图_电动车无刷电机控制器驱动电路图 10.6w次阅读
- 无刷电机为什么不用铁氧体_无刷电机驱动原理及结构图 4w次阅读
- 示波器在直流无刷电机行业的应用案例解析 3435次阅读
- 示波器在直流无刷电机行业的典型应用 5472次阅读
下载排行
本周
- 1TPS54202H降压转换器评估模块用户指南
- 1.02MB | 7次下载 | 免费
- 2华瑞昇CR215芯片数字万用表原理图
- 0.21 MB | 1次下载 | 3 积分
- 3SMD LED选型目录 灯珠手册
- 5.36 MB | 1次下载 | 免费
- 4Tiva C系列DK-TM4C129X入门指南
- 1.69MB | 1次下载 | 免费
- 5电涌保护器(SPD)的选择、安装以及装配
- 4.57 MB | 1次下载 | 免费
- 6时源芯微EMC前车灯案例
- 458.59 KB | 1次下载 | 免费
- 7bq25890、bq25892双级联充电器EVM(PWR692)用户指南
- 2.02MB | 1次下载 | 免费
- 8TPS54426降压转换器评估模块用户指南
- 847.7KB | 次下载 | 免费
本月
- 1ADI高性能电源管理解决方案
- 2.43 MB | 156次下载 | 免费
- 22024PMIC市场洞察
- 2.23 MB | 63次下载 | 免费
- 3开关电源设计原理手册
- 1.83 MB | 30次下载 | 免费
- 4智能门锁原理图
- 0.39 MB | 28次下载 | 免费
- 5OAH0428最新规格书(中文)
- 2.52 MB | 15次下载 | 7 积分
- 6ST7789V2单芯片控制器/驱动器英文手册
- 3.07 MB | 9次下载 | 1 积分
- 7LTH7充电电路和锂电池升压5V输出电路原理图
- 0.04 MB | 7次下载 | 免费
- 8TPS54202H降压转换器评估模块用户指南
- 1.02MB | 7次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935119次下载 | 10 积分
- 2开源硬件-PMP21529.1-4 开关降压/升压双向直流/直流转换器 PCB layout 设计
- 1.48MB | 420061次下载 | 10 积分
- 3Altium DXP2002下载入口
- 未知 | 233084次下载 | 10 积分
- 4电路仿真软件multisim 10.0免费下载
- 340992 | 191367次下载 | 10 积分
- 5十天学会AVR单片机与C语言视频教程 下载
- 158M | 183334次下载 | 10 积分
- 6labview8.5下载
- 未知 | 81581次下载 | 10 积分
- 7Keil工具MDK-Arm免费下载
- 0.02 MB | 73807次下载 | 10 积分
- 8LabVIEW 8.6下载
- 未知 | 65987次下载 | 10 积分
评论
查看更多