资料介绍
μC/OS-Ⅱ是一种开放源码的实时操作系统,具有抢先式、多任务的特点,已被应用到众多的微处理器上。虽然该内核功能较多,但还是有不甚完善的地方。笔者在分析使用中发现,内核在任务管理(包括任务调度、任务间的通信与同步)和中断管理上是比较完善的,具有可以接受的稳定性和可靠性;但在内存管理上显得过于简单,内存分区的建立方式有不合理之处。
1 内存管理不足之处的分析
在分析许多μC/OS-Ⅱ的应用实例中发现,任务栈空间和内存分区的创建采用了定义全局数组的方法,即定义一维或二维的全局数组,在创建任务或内存分区时,将数组名作为内存地址指针传递给生成函数。这样实现起来固然简单,但是不够灵活有效。
编译器会将全局数组作为未初始化的全局变量,放到应用程序映像的数据段。数组大小是固定的,生成映像后不可能在使用中动态地改变。对于任务栈空间来说,数组定义大了会造成内存浪费;定义小了任务栈溢出,会造成系统崩溃。对于内存分区,在不知道系统初始化后给用户留下了多少自由内存空间的情况下,很难定义内存分区所用数组的大小。总之利用全局数组来分配内存空间是很不合理的。
另外,现在的μC/OS-Ⅱ只支持固定大小的内存分区,容易造成内存浪费。μC/OS-Ⅱ将来应该被改进以支持可变大小的内存分区。为了实现这一功能,系统初始化后能清楚地掌握自由内存空间的情况是很重要的。
2 解决问题的方法
为了能清楚掌握自由内存空间的情况,避免使用全局数组分配内存空间,关键是要知道整个应用程序在编译、链接后代码段和数据段的大小,在目标板内存中是如何定位的,以及目标板内存大小。对于最后一条,系统编程人员当然是清楚的,第一条编译器会给出,而如何定位是由编程人员根据具体应用环境在系统初始化确定的。因此,系统初始化时,如果能正确安排代码段和数据段的位置,就能清楚地知道用户可以自由使用的内存空间起始地址。用目标板内存最高端地址减去起始地址,就是这一自由空间的大小。
3 举例描述该方法的实现
下面以在CirrusLogic公司的EP7211微处理器上使用μC/OS-Ⅱ为例,描述该方法的实现过程。假设基于μC/OS-Ⅱ的应用程序比较简单,以简化问题的阐述。
3.1 芯片初始化过程和链接器的功能
EP7211采用了RISC体系结构的微处理器核ARM7TDMI,该芯片支持内存管理单元MMU。系统加电复位后,从零地址开始执行由汇编语言编写的初始化代码。零地址存放着中断向量表,第一个是复位中断,通过该中断向量指向的地址可以跳转到系统初始化部分,执行微处理器寄存器初始化。如果使用虚拟内存,则启动MMU,然后是为C代码执行而进行的C环境初始化。之后创建中断处理程序使用的栈空间,最后跳转到C程序的入口执行系统C程序。
对于应用程序,ARM软件开发包提供的ARM链接器会产生只读段(read-only section RO)、读写段(read-write section RW)和零初始化段(zero-initialized section ZI)。每种段可以有多个,对较简单的程序一般各有一个。
只读段就是代码段,读写段是已经初始化的全局变量,而零初始化段中存放未初始化的全局变量。链接器同时提供这三种段的起始地址和结束地址,并用已定义的符号表示。描述如下:Image$$RO$$Base表示只读段的起始地址,Image$$RO$$Limit表示只读段结束后的首地址;Image$$RW$$Base 表示读写段的起始地址,Image$$RW$$Limit表示读写段结束后的首地址;Image$$ZI$$Base 表示零初始化段的起始地址,Image$$ZI$$Limit表示零初始化段结束后的首地址。
一般嵌入式应用,程序链接定位后生成bin文件,即绝对地址空间的代码,因此上述符号的值表示物理地址。对于简单程序,可在编译链接时指定RO和RW的基地址,帮助链接器计算上述符号的值。对于较复杂的程序可以由scatter描述文件来定义RO和RW的基地址。
3.2 具体实例及说明
所谓C环境初始化,就是利用上述符号初始化RW段和ZI段,以使后面使用全局变量的C程序正常运行。下面是初始化部分的实例:
ENTRY ;应用程序入口,应该位于内存的零地址。
;中断向量表
B Reset_Handler
B Undefined_Handler
B SWI_Handler
B Prefetch_Handler
B Abort_Handler
NOP ;保留向量
B IRQ_Handler
B FIQ_Handler
;当用户使用除复位中断以外的几个中断时,应将跳转地址换成中断处理程序的入口地址。
Undefined_Handler
B Undefined_Handler
SWI_Handler
B SWI_Handler
Prefetch_Handler
B Prefetch_Handler
Abort_Handler
B Abort_Handler
IRQ_Handler
B IRQ_Handler
FIQ_Handler
B FIQ_Handler
;程序初始化部分
Reset_Handler
;初始化微处理器寄存器,以使其正常工作。
……
;启动MMU,进入虚拟内存管理。
……
;初始化C环境。
IMPORT |Image$$RO$$Limit|
IMPORT |Image$$RW$$Base|
IMPORT |Image$$ZI$$Base|
IMPORT |Image$$ZI$$Limit|
LDR r0, =|Image$$RO$$Limit|
LDR r1, =|Image$$RW$$Base|
LDR r3, =|Image$$ZI$$Base|
CMP r0, r1
BEQ %F1
0 CMP r1, r3
LDRCC r2, [r0], #4
STRCC r2, [r1], #4
BCC %B0
1 LDR r1, =|Image$$ZI$$Limit|
MOV r2, #0
2 CMP r3, r1
STRCC r2, [r3], #4
BCC %B2
在RAM中初始化RW段和ZI段后,ZI段结束后的首地址到系统RAM最高端之间的内存就是用户可以自由使用的空间,也就是说Image$$ZI$$Limit是这一内存空间的起始地址。
如果系统使用了FIQ和IRQ中断,在ZI段之后可以创建这两种中断的栈空间,然后是操作系统使用的SVC模式下的栈空间,假设每一个栈大小为1024个字节。如果系统使用了定时器,还可在此之后创建定时器中断的栈空间,假设其大小也为1024个字节。此时自由内存空间的起始地址变为:
Image$$ZI$$Limit+1024×4
在初始化代码的最后将其作为一个参数传递到C程序入口,代码如下:
LDR r0, =|Image$$ZI$$Limit|
;创建IRQ栈空间。
……
;增加地址指针。
ADD r0, r0, #1024
;创建FIQ栈空间。
……
;增加地址指针。
ADD r0, r0, #1024
;创建SVC栈空间。
……
;增加地址指针。
ADD r0, r0, #1024
;创建定时器中断栈空间。
……
;增加地址指针。
ADD r0, r0, #1024
;导入C代码入口点。
IMPORT C_ENTRY
;跳转到C代码,此时r0作为入口参数。
B C_ENTRY
1 内存管理不足之处的分析
在分析许多μC/OS-Ⅱ的应用实例中发现,任务栈空间和内存分区的创建采用了定义全局数组的方法,即定义一维或二维的全局数组,在创建任务或内存分区时,将数组名作为内存地址指针传递给生成函数。这样实现起来固然简单,但是不够灵活有效。
编译器会将全局数组作为未初始化的全局变量,放到应用程序映像的数据段。数组大小是固定的,生成映像后不可能在使用中动态地改变。对于任务栈空间来说,数组定义大了会造成内存浪费;定义小了任务栈溢出,会造成系统崩溃。对于内存分区,在不知道系统初始化后给用户留下了多少自由内存空间的情况下,很难定义内存分区所用数组的大小。总之利用全局数组来分配内存空间是很不合理的。
另外,现在的μC/OS-Ⅱ只支持固定大小的内存分区,容易造成内存浪费。μC/OS-Ⅱ将来应该被改进以支持可变大小的内存分区。为了实现这一功能,系统初始化后能清楚地掌握自由内存空间的情况是很重要的。
2 解决问题的方法
为了能清楚掌握自由内存空间的情况,避免使用全局数组分配内存空间,关键是要知道整个应用程序在编译、链接后代码段和数据段的大小,在目标板内存中是如何定位的,以及目标板内存大小。对于最后一条,系统编程人员当然是清楚的,第一条编译器会给出,而如何定位是由编程人员根据具体应用环境在系统初始化确定的。因此,系统初始化时,如果能正确安排代码段和数据段的位置,就能清楚地知道用户可以自由使用的内存空间起始地址。用目标板内存最高端地址减去起始地址,就是这一自由空间的大小。
3 举例描述该方法的实现
下面以在CirrusLogic公司的EP7211微处理器上使用μC/OS-Ⅱ为例,描述该方法的实现过程。假设基于μC/OS-Ⅱ的应用程序比较简单,以简化问题的阐述。
3.1 芯片初始化过程和链接器的功能
EP7211采用了RISC体系结构的微处理器核ARM7TDMI,该芯片支持内存管理单元MMU。系统加电复位后,从零地址开始执行由汇编语言编写的初始化代码。零地址存放着中断向量表,第一个是复位中断,通过该中断向量指向的地址可以跳转到系统初始化部分,执行微处理器寄存器初始化。如果使用虚拟内存,则启动MMU,然后是为C代码执行而进行的C环境初始化。之后创建中断处理程序使用的栈空间,最后跳转到C程序的入口执行系统C程序。
对于应用程序,ARM软件开发包提供的ARM链接器会产生只读段(read-only section RO)、读写段(read-write section RW)和零初始化段(zero-initialized section ZI)。每种段可以有多个,对较简单的程序一般各有一个。
只读段就是代码段,读写段是已经初始化的全局变量,而零初始化段中存放未初始化的全局变量。链接器同时提供这三种段的起始地址和结束地址,并用已定义的符号表示。描述如下:Image$$RO$$Base表示只读段的起始地址,Image$$RO$$Limit表示只读段结束后的首地址;Image$$RW$$Base 表示读写段的起始地址,Image$$RW$$Limit表示读写段结束后的首地址;Image$$ZI$$Base 表示零初始化段的起始地址,Image$$ZI$$Limit表示零初始化段结束后的首地址。
一般嵌入式应用,程序链接定位后生成bin文件,即绝对地址空间的代码,因此上述符号的值表示物理地址。对于简单程序,可在编译链接时指定RO和RW的基地址,帮助链接器计算上述符号的值。对于较复杂的程序可以由scatter描述文件来定义RO和RW的基地址。
3.2 具体实例及说明
所谓C环境初始化,就是利用上述符号初始化RW段和ZI段,以使后面使用全局变量的C程序正常运行。下面是初始化部分的实例:
ENTRY ;应用程序入口,应该位于内存的零地址。
;中断向量表
B Reset_Handler
B Undefined_Handler
B SWI_Handler
B Prefetch_Handler
B Abort_Handler
NOP ;保留向量
B IRQ_Handler
B FIQ_Handler
;当用户使用除复位中断以外的几个中断时,应将跳转地址换成中断处理程序的入口地址。
Undefined_Handler
B Undefined_Handler
SWI_Handler
B SWI_Handler
Prefetch_Handler
B Prefetch_Handler
Abort_Handler
B Abort_Handler
IRQ_Handler
B IRQ_Handler
FIQ_Handler
B FIQ_Handler
;程序初始化部分
Reset_Handler
;初始化微处理器寄存器,以使其正常工作。
……
;启动MMU,进入虚拟内存管理。
……
;初始化C环境。
IMPORT |Image$$RO$$Limit|
IMPORT |Image$$RW$$Base|
IMPORT |Image$$ZI$$Base|
IMPORT |Image$$ZI$$Limit|
LDR r0, =|Image$$RO$$Limit|
LDR r1, =|Image$$RW$$Base|
LDR r3, =|Image$$ZI$$Base|
CMP r0, r1
BEQ %F1
0 CMP r1, r3
LDRCC r2, [r0], #4
STRCC r2, [r1], #4
BCC %B0
1 LDR r1, =|Image$$ZI$$Limit|
MOV r2, #0
2 CMP r3, r1
STRCC r2, [r3], #4
BCC %B2
在RAM中初始化RW段和ZI段后,ZI段结束后的首地址到系统RAM最高端之间的内存就是用户可以自由使用的空间,也就是说Image$$ZI$$Limit是这一内存空间的起始地址。
如果系统使用了FIQ和IRQ中断,在ZI段之后可以创建这两种中断的栈空间,然后是操作系统使用的SVC模式下的栈空间,假设每一个栈大小为1024个字节。如果系统使用了定时器,还可在此之后创建定时器中断的栈空间,假设其大小也为1024个字节。此时自由内存空间的起始地址变为:
Image$$ZI$$Limit+1024×4
在初始化代码的最后将其作为一个参数传递到C程序入口,代码如下:
LDR r0, =|Image$$ZI$$Limit|
;创建IRQ栈空间。
……
;增加地址指针。
ADD r0, r0, #1024
;创建FIQ栈空间。
……
;增加地址指针。
ADD r0, r0, #1024
;创建SVC栈空间。
……
;增加地址指针。
ADD r0, r0, #1024
;创建定时器中断栈空间。
……
;增加地址指针。
ADD r0, r0, #1024
;导入C代码入口点。
IMPORT C_ENTRY
;跳转到C代码,此时r0作为入口参数。
B C_ENTRY
下载该资料的人也在下载
下载该资料的人还在阅读
更多 >
- 嵌入式实时操作系统μC/OS-Ⅱ在LPC1788上的移植及应用
- 基于μC/OS-Ⅱ的远程环境监测系统设计方案
- 以μC OS-III为例的嵌入式实时操作系统概述 8次下载
- 浅谈嵌入式操作系统μC/OS-Ⅱ面向数控系统的改进 1次下载
- 关于μC/OS-II实时操作系统内存管理的改进方法分析 0次下载
- 嵌入式实时操作系统μC_OS_在LPC1788上的移植及应用 10次下载
- 嵌入式实时操作系统uCOS-II原理 261次下载
- 实时操作系统μCOS_II在LPC2114上的移植
- 一种基于μC/OS-Ⅱ的IPMC开发方案
- 基于μC/OS-Ⅱ的实时分层调度算法研究
- 实时操作系统μC/OS-II调度算法的研究
- 无线信息设备的理想操作系统Symbian OS
- μC/OS-Ⅱ与VxWORKs介绍及说明
- UC/OS-Ⅱ操作系统在ARM处理器上的移植
- 嵌入式实时操作系统μC/OS-Ⅱ在ARM处理器上的实现
- 详解实时操作系统和非实时操作系统 3500次阅读
- FreeRTOS:一个迷你的实时操作系统内核 828次阅读
- Linux是实时系统还是分时操作系统? 1414次阅读
- 内存的基本概念以及操作系统的内存管理算法 1486次阅读
- RTA-OS实时操作系统中的Task对象 3108次阅读
- 基于实时嵌入式操作系统mC/OS-II实现GPRS终端系统的设计 2252次阅读
- μC/OS-II操作系统移植在LPC2378上的系统测试及问题解决方法 1055次阅读
- 米尔科技嵌入式实时操作系统介绍 2179次阅读
- 51单片机对μC/OS-II实时操作系统的移植 2385次阅读
- 对实时操作系统特性的讨论 5039次阅读
- 基于Linux上进行改进的具有实时应用能力的现代嵌入式操作系统解决方案详解 843次阅读
- μC/OS-Ⅱ操作系统设备驱动设计及实际应用举例 1553次阅读
- 如何安装实时操作系统RTOS 6104次阅读
- 基于FreeRTOS的嵌入式实时操作系统的原理和实现 6562次阅读
- uC/OS和uClinux操作系统的区别 4403次阅读
下载排行
本周
- 1TC358743XBG评估板参考手册
- 1.36 MB | 330次下载 | 免费
- 2开关电源基础知识
- 5.73 MB | 6次下载 | 免费
- 3100W短波放大电路图
- 0.05 MB | 4次下载 | 3 积分
- 4嵌入式linux-聊天程序设计
- 0.60 MB | 3次下载 | 免费
- 5基于FPGA的光纤通信系统的设计与实现
- 0.61 MB | 2次下载 | 免费
- 6基于FPGA的C8051F单片机开发板设计
- 0.70 MB | 2次下载 | 免费
- 751单片机窗帘控制器仿真程序
- 1.93 MB | 2次下载 | 免费
- 8基于51单片机的RGB调色灯程序仿真
- 0.86 MB | 2次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234315次下载 | 免费
- 2555集成电路应用800例(新编版)
- 0.00 MB | 33564次下载 | 免费
- 3接口电路图大全
- 未知 | 30323次下载 | 免费
- 4开关电源设计实例指南
- 未知 | 21548次下载 | 免费
- 5电气工程师手册免费下载(新编第二版pdf电子书)
- 0.00 MB | 15349次下载 | 免费
- 6数字电路基础pdf(下载)
- 未知 | 13750次下载 | 免费
- 7电子制作实例集锦 下载
- 未知 | 8113次下载 | 免费
- 8《LED驱动电路设计》 温德尔著
- 0.00 MB | 6653次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935054次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537796次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234315次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233046次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191185次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183278次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138040次下载 | 免费
评论
查看更多