电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示
创作
电子发烧友网>电子资料下载>人工智能>一文了解人工智能的概念元素资料下载

一文了解人工智能的概念元素资料下载

2021-04-18 | pdf | 497.41KB | 次下载 | 10积分

资料介绍

人工���能的发展曾经经历过几次起起伏伏,近来在深度学习技术的推动下又迎来了一波新的前所未有的高潮。近日,IBM 官网发表了一篇概述文章,对人工智能技术的发展过程进行了简单梳理,同时还图文并茂地介绍了感知器、聚类算法、基于规则的系统、机器学习、深度学习、神经网络等技术的概念和原理。 人类对如何创造智能机器的思考从来没有中断过。期间,人工智能的发展起起伏伏,有成功,也有失败,以及其中暗藏的潜力。今天,有太多的新闻报道是关于机器学习算法的应用问题,从癌症检查预测到图像理解、自然语言处理,人工智能正在赋能并改变着这个世界。 现代人工智能的历史具备成为一部伟大戏剧的所有元素。在最开始的 1950 年代,人工智能的发展紧紧围绕着思考机器和焦点人物比如艾伦·图灵、冯·诺伊曼,迎来了其第一次春天。经过数十年的繁荣与衰败,以及难以置信的高期望,人工智能及其先驱们再次携手来到一个新境界。现在,人工智能正展现着其真正的潜力,深度学习、认知计算等新技术不断涌现,且不乏应用指向。 本文探讨了人工智能及其子领域的一些重要方面。下面就先从人工智能发展的时间线开始,并逐个剖析其中的所有元素。 现代人工智能的时间线 1950 年代初期,人工智能聚焦在所谓的强人工智能,希望机器可以像人一样完成任何智力任务。强人工智能的发展止步不前,导致了弱人工智能的出现,即把人工智能技术应用于更窄领域的问题。1980 年代之前,人工智能的研究一直被这两种范式分割着,两营相对。但是,1980 年左右,机器学习开始成为主流,它的目的是让计算机具备学习和构建模型的能力,从而它们可在特定领域做出预测等行为。 图 1:现代人工智能发展的时间线 在人工智能和机器学习研究的基础之上,深度学习在 2000 年左右应运而生。计算机科学家在多层神经网络之中使用了新的拓扑学和学习方法。最终,神经网络的进化成功解决了多个领域的棘手问题。 在过去的十年中,认知计算(Cognitive computing)也出现了,其目标是打造可以学习并与人类自然交互的系统。通过成功地击败 Jeopardy 游戏的世界级选手,IBM Watson 证明了认知计算的价值。 在本文中,我将逐一探索上述的所有领域,并对一些关键算法作出解释。 基础性人工智能 1950 年之前的研究提出了大脑是由电脉冲网络组成的想法,正是脉冲之间的交互产生了人类思想与意识。艾伦·图灵表明一切计算皆是数字,那么,打造一台能够模拟人脑的机器也就并非遥不可及。 上文说过,早期的研究很多是强人工智能,但是也提出了一些基本概念,被机器学习和深度学习沿用至今。 图 2:1950 - 1980 年间人工智能方法的时间线 人工智能搜索引擎 人工智能中的很多问题可以通过强力搜索(brute-force search)得到解决。然而,考虑到中等问题的搜索空间,基本搜索很快就受影响。人工智能搜索的最早期例子之一是跳棋程序的开发。亚瑟·塞缪尔(Arthur Samuel)在 IBM 701 电子数据处理机器上打造了第一款跳棋程序,实现了对搜索树(alpha-beta 剪枝)的优化;这个程序也记录并奖励具体行动,允许应用学习每一个玩过的游戏(这是首个自我学习的程序)。为了提升程序的学习率,塞缪尔将其编程为自我游戏,以提升其游戏和学习的能力。 尽管你可以成功地把搜索应用到很多简单问题上,但是当选择的数量增加时,这一方法很快就会失效。以简单的一字棋游戏为例,游戏一开始,有 9 步可能的走棋,每 1 个走棋有 8 个可能的相反走棋,依次类推。一字棋的完整走棋树包含 362,880 个节点。如果你继续将这一想法扩展到国际象棋或者围棋,很快你就会发展搜索的劣势。 感知器 感知器是单层神经网络的一个早期监督学习算法。给定一个输入特征向量,感知器可对输入进行具体分类。通过使用训练集,网络的权重和偏差可为线性分类而更新。感知器的首次实现是 IBM 704,接着在自定义硬件上用于图像识别。 图 3:感知器与线性分类 作为一个线性分类器,感知器有能力解决线性分离问题。感知器局限性的典型实例是它无法学习专属的 OR (XOR) 函数。多层感知器解决了这一问题,并为更复杂的算法、网络拓扑学、深度学习奠定了基础。 聚类算法 使用感知器的方法是有监督的。用户提供数据来训练网络,然后在新数据上对该网络进行测试。聚类算法则是一种无监督学习(unsupervised learning)方法。在这种模型中,算法会根据数据的一个或多个属性将一组特征向量组织成聚类。 图 4:在一个二维特征空间中的聚类 你可以使用少量代码就能实现的最简单的聚类算法是 k-均值(k-means)。其中,k 表示你为样本分配的聚类的数量。你可以使用一个随机特征向量来对一个聚类进行初始化,然后将其它样本添加到其最近邻的聚类(假定每个样本都能表示一个特征向量,并且可以使用 Euclidean distance 来确定「距离」)。随着你往一个聚类添加的样本越来越多,其形心(centroid,即聚类的中心)就会重新计算。然后该算法会重新检查一次样本,以确保它们都在最近邻的聚类中,最后直到没有样本需要改变所属聚类。 尽管 k-均值聚类相对有效,但你必须事先确定 k 的大小。根据数据的不同,其它方法可能会更加有效,比如分层聚类(hierarchical clustering)或基于分布的聚类(distribution-based clustering)。 决策树 决策树和聚类很相近。决策树是一种关于观察(observation)的预测模型,可以得到一些结论。结论在决策树上被表示成树叶,而节点则是观察分叉的决策点。决策树来自决策树学习算法,其中数据集会根据属性值测试(attribute value tests)而被分成不同的子集,这个分割过程被称为递归分区(recursive partitioning)。 考虑下图中的示例。在这个数据集中,我可以基于三个因素观察到某人是否有生产力。使用一个决策树学习算法,我可以通过一个指标来识别属性(其中一个例子是信息增益)。在这个例子中,心情(mood)是生产力的主要影响因素,所以我根据 Good Mood 一项是 Yes 或 No 而对这个数据集进行了分割。但是,在 Yes 这边,还需要我根据其它两个属性再次对该数据集进行切分。表中不同的颜色对应右侧中不同颜色的叶节点。 图 5:一个简单的数据集及其得到的决策树 决策树的一个重要性质在于它们的内在的组织能力,这能让你轻松地(图形化地)解释你分类一个项的方式。流行的决策树学习算法包括 C4.5 以及分类与回归树(Classification and Regression Tree)。 基于规则的系统 最早的基于规则和推理的系统是 Dendral,于 1965 年被开发出来,但直到 1970 年代,所谓的专家系统(expert systems)才开始大行其道。基于规则的系统会同时存有所需的知识的规则,并会使用一个推理系统(reasoning system)来得出结论。 基于规则的系统通常由一个规则集合、一个知识库、一个推理引擎(使用前向或反向规则链)和一个用户接口组成。下图中,我使用了知识「苏格拉底是人」、规则「如果是人,就会死」以及一个交互「谁会死?」 图 6:基于规则的系统 基于规则的系统已经在语音识别、规划和控制以及疾病识别等领域得到了应用。上世纪 90 年代人们开发的一个监控和诊断大坝稳定性的系统 Kaleidos 至今仍在使用。 机器学习 机器学习是人工智能和计算机科学的一个子领域,也有统计学和数学优化方面的根基。机器学习涵盖了有监督学习和无监督学习领域的技术,可用于预测、分析和数据挖掘。机器学习不限于深度学习这一种。但在这一节,我会介绍几种使得深度学习变得如此高效的算法。 图 7:机器学习方法的时间线 反向传播 神经网络的强大力量源于其多层的结构。单层感知器的训练是很直接的,但得到的网络并不强大。那问题就来了:我们如何训练多层网络呢?这就是反向传播的用武之地。
下载该资料的人也在下载 下载该资料的人还在阅读
更多 >

评论

查看更多

下载排行

本周

  1. 1电子电路原理第七版PDF电子教材免费下载
  2. 0.00 MB  |  1491次下载  |  免费
  3. 2单片机典型实例介绍
  4. 18.19 MB  |  95次下载  |  1 积分
  5. 3S7-200PLC编程实例详细资料
  6. 1.17 MB  |  27次下载  |  1 积分
  7. 4笔记本电脑主板的元件识别和讲解说明
  8. 4.28 MB  |  18次下载  |  4 积分
  9. 5开关电源原理及各功能电路详解
  10. 0.38 MB  |  11次下载  |  免费
  11. 6100W短波放大电路图
  12. 0.05 MB  |  4次下载  |  3 积分
  13. 7基于单片机和 SG3525的程控开关电源设计
  14. 0.23 MB  |  4次下载  |  免费
  15. 8基于AT89C2051/4051单片机编程器的实验
  16. 0.11 MB  |  4次下载  |  免费

本月

  1. 1OrCAD10.5下载OrCAD10.5中文版软件
  2. 0.00 MB  |  234313次下载  |  免费
  3. 2PADS 9.0 2009最新版 -下载
  4. 0.00 MB  |  66304次下载  |  免费
  5. 3protel99下载protel99软件下载(中文版)
  6. 0.00 MB  |  51209次下载  |  免费
  7. 4LabView 8.0 专业版下载 (3CD完整版)
  8. 0.00 MB  |  51043次下载  |  免费
  9. 5555集成电路应用800例(新编版)
  10. 0.00 MB  |  33562次下载  |  免费
  11. 6接口电路图大全
  12. 未知  |  30320次下载  |  免费
  13. 7Multisim 10下载Multisim 10 中文版
  14. 0.00 MB  |  28588次下载  |  免费
  15. 8开关电源设计实例指南
  16. 未知  |  21539次下载  |  免费

总榜

  1. 1matlab软件下载入口
  2. 未知  |  935053次下载  |  免费
  3. 2protel99se软件下载(可英文版转中文版)
  4. 78.1 MB  |  537793次下载  |  免费
  5. 3MATLAB 7.1 下载 (含软件介绍)
  6. 未知  |  420026次下载  |  免费
  7. 4OrCAD10.5下载OrCAD10.5中文版软件
  8. 0.00 MB  |  234313次下载  |  免费
  9. 5Altium DXP2002下载入口
  10. 未知  |  233046次下载  |  免费
  11. 6电路仿真软件multisim 10.0免费下载
  12. 340992  |  191183次下载  |  免费
  13. 7十天学会AVR单片机与C语言视频教程 下载
  14. 158M  |  183277次下载  |  免费
  15. 8proe5.0野火版下载(中文版免费下载)
  16. 未知  |  138039次下载  |  免费