资料介绍
从电路来说,总是存在驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电 流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就 是一种噪声,会影响前级的正常工作。这就是耦合。
去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。旁路 电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提供一条低阻抗泄放途径。高频旁路电容一般比较小,根据谐振频率一般是 0.1u,0.01u 等,而去耦合电容一般比较大,是 10u 或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。
旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。
去耦电容在集成电路电源和地之间的有两个作用:
一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。
数字电路中典型的去耦电容值是 0.1μF。这个电容的分布电感的典型值是 5μH。
0.1μF 的去耦电容有 5μH 的分布电感,它的并行共振频率大约在 7MHz 左右,也就是说,对于 10MHz 以下的噪声有较好的去耦效果,对 40MHz 以上的噪声几乎不起作用。
1μF、10μF 的电容,并行共振频率在 20MHz 以上,去除高频噪声的效果要好一些。
每 10 片左右集成电路要加一片充放电电容,或 1 个蓄能电容,可选 10μF 左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用钽电容或聚碳酸酯电容。
去耦电容的选用并不严格,可按 C = 1 / F,即 10MHz 取 0.1μF,100MHz 取 0.01μF。
分布电容是指由非形态电容形成的一种分布参数。一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容。这种电容的容量很小,但可能对电路形成一定的影响。
在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候。也成为寄生电容,制造时一定会产生,只是大小的问题。
布高速 PCB 时,过孔可以减少板层电容,但会增加电感。分布电感是指在频率提高时,因导体自感而造成的阻抗增加。
电容器选用及使用注意事项:
1. 一般在低频耦合或旁路,电气特性要求较低时,可选用纸介、涤纶电容器;在高频高压电路中,应选用云母电容器或瓷介电容器;在电源滤波和退耦电路中,可选用电解电容器。
2. 在振荡电路、延时电路、音调电路中,电容器容量应尽可能与计算值一致。在各种滤波及网(选频网络),电容器容量要求精确;在退耦电路、低频耦合电路中,对同两级精度的要求不太严格。
3. 电容器额定电压应高于实际工作电压,并要有足够的余地,一般选用耐压值为实际工作电压两倍以上的电容器。
4. 优先选用绝缘电阻高,损耗小的电容器,还要注意使用环境。
我们知道,一般我们所用的电容最重要的一点就是滤波和旁路,我在设计中也正是这么使用的。
对于高频杂波,一般我的经验是不要过大的电容,因为我个人认为,过大的电容虽然对于低频的杂波过滤效果也许比较好,但是对于高频的杂波,由于其谐振频率的下降,使得对于高频杂波的过滤效果不很理想。所以电容的选择不是容量越大越好。
疑问点:
1. 以上都是我的经验,没有理论证实,希望哪位可以在理论在帮忙解释一下是否正确。或者推荐一个网页或者网站。
2. 是不是超过了谐振频率,其阻抗将大大增加,所以对高频的过滤信号,其作用就相对减小了呢?
3. 理想的滤波点是不是在谐振频率这点上???(没有搞懂中)
4. 以前只知道电容的旁路作用是隔直通交,现在具体于PCB 设计中,电容的这一旁路作用具体体现在哪里?
在 用电容抑制电磁骚扰时,最容易忽视的问题就是电容引线对滤波效果的影响。电容器的容抗与频率成反比,正是利用这一特性,将电容并联在信号线与地线之间起到 对高频噪声的旁路作用。然而,在实际工程中,很多人发现这种方法并不能起到预期滤除噪声的效果,面对顽固的电磁噪声束手无策。出现这种情况的一个原因是忽 略了电容引线对旁路效果的影响。
实际电容器的电路模型是由等效电感(ESL)、电容和等效电阻(ESR)构成的串联网络。理想电容的阻抗 是随着频率的升高降低,而实际电容的阻抗是图 1 所示的网络的阻抗特性,在频率较低的时候,呈现电容特性,即阻抗随频率的增加而降低,在某一点发生谐振,在这点电容的阻抗等于等效串联电阻 ESR。在谐振点以上,由于 ESL 的作用,电容阻抗随着频率的升高而增加,这是电容呈现电感的阻抗特性。在谐振点以上,由于电容的阻抗增加,因此对高频噪声的旁路作用减弱,甚至消失。
电 容的谐振频率由 ESL 和 C 共同决定,电容值或电感值越大,则谐振频率越低,也就是电容的高频滤波效果越差。ESL 除了与电容器的种类有关外,电容的引线长度是一个十分重要的参数,引线越长,则电感越大,电容的谐振频率越低。因此在实际工程中,要使电容器的引线尽量 短。
根据 LC 电路串联谐振的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低。许多人认为电容器的容值越大,滤波效果越好,这是一种误解。电容越大 对低频干扰的旁路效果虽然好,但是由于电容在较低的频率发生了谐振,阻抗开始随频率的升高而增加,因此对高频噪声的旁路效果变差。表 1 是不同容量瓷片电容器的自谐振频率,电容的引线长度是1.6mm(你使用的电容的引线有这么短吗?)。表 1 电容值自谐振频率(MHz)
电容值自谐振频率(MHz)1m F 1.7 820 pF 38.50.1m F 4 680 pF 42.50.01m F 12.6 560 pF
453300pF 19.3 470 pF 491800 pF 25.5 390 pF 541100pF 33 330 pF 60
尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的。当要滤除的噪声频率
确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。
一 般来说,容量为uf 级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到 局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf 的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰在电子电路 中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。
对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling,也称退耦)电容是把输出信号的干扰作为滤除对象。
在 供电电源和地之间也经常连接去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的 通路;三是防止电源携带的噪声对电路构成干扰。我来总结一下,旁路实际上就是给高频干扰提供一个到地的能量释放途径,不同的容值可以针对不同的频率干扰。 所以一般旁路时常用一个大贴片加上一个小贴片并联使用。对于相同容量的电容的Q 值我认为会影响旁路时高频干扰释放路径的阻抗,直接影响旁路的效果,对于旁路来说,希望在旁路作用时,电容的等效阻抗越小越好,这样更利于能量的排泄。
数字电路输出信号电平转换过程中会产生很大的冲击电流,在供电线和电源内阻上产生较大的压降,使供电电压产生跳变,产生阻抗噪声(亦称开关噪声),形成干扰源。
一、冲击电流的产生:
(1)输出级控制正负逻辑输出的管子短时间同时导通,产生瞬态尖峰电流
(2)受负载电容影响,输出逻辑由“0”转换至“1”时,由于对负载电容的充电而产生瞬态尖峰电流。瞬态尖峰电流可达50ma,动作时间大约几ns 至几十ns。
二、降低冲击电流影响的措施:
(1)降低供电电源内阻和供电线阻抗
(2)匹配去耦电容
三、何为去耦电容
在IC(或电路)电源线端和地线端加接的电容称为去耦电容。
四、去耦电容如何取值
去耦电容取值一般为0.01~0.1uf,频率越高,去耦电容值越小。
五、去耦电容的种类
(1)独石 (2)玻璃釉 (3)瓷片 (4)钽
六、去耦电容的放置
下载该资料的人也在下载
下载该资料的人还在阅读
更多 >
- 旁路电容、电容耦合、退耦等资源汇总下载 9次下载
- 去耦电容的作用及它在单片机中的应用资料下载
- 去耦的基本电路元件——电容资料下载
- 旁路电容的重要作用资料下载
- 去耦电容全攻略资料下载
- 选择去耦电容时,需要考虑的因素资料下载
- 去耦旁路电路,不同规格的电容在PCB布局时该怎么摆资料下载
- 怎么分清滤波电容、去耦电容、旁路电容?其实并不难~
- 去耦电容有什么作用
- 对去耦电容,旁路电容,滤波电容的理解 11次下载
- 滤波电容_去耦电容_旁路电容作用介绍 20次下载
- 滤波电容、去耦电容、旁路电容作用 61次下载
- 去耦电容和旁路电容的区别
- 关于滤波电容,去耦电容,旁路电容作用
- 功率分配系统PDS设计如何利用旁路电容/去耦电容
- 详解去耦电容:去耦电容的PCB布局布线 2367次阅读
- 去耦电容的作用 1055次阅读
- 去耦电容的作用 642次阅读
- 滤波电容、去耦电容、旁路电容作用及其原理 2218次阅读
- 如何选择合适的去耦电容 常见的去耦电容资料介绍 4490次阅读
- 旁路电容和去耦电容的作用及选用 9678次阅读
- 电容四种作用:储能、滤波、旁路、去耦 3w次阅读
- 去耦电容和旁路电容的区别与联系 1.9w次阅读
- 去耦电容和旁路电容的电容值选择方法 6057次阅读
- 去耦电容和旁路电容的选择 3306次阅读
- 高频旁路电容的原理_高频旁路电容的作用 4886次阅读
- 浅谈滤波电容、去耦电容、旁路电容之间区别 2.8w次阅读
- 去耦电容和旁路电容的区别和作用 5379次阅读
- 去耦电容和bypass电容、滤波电容的原理和区别 2.5w次阅读
- 去耦电容器的应用解决方案 1840次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1491次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 95次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 11次下载 | 免费
- 6100W短波放大电路图
- 0.05 MB | 4次下载 | 3 积分
- 7基于单片机和 SG3525的程控开关电源设计
- 0.23 MB | 4次下载 | 免费
- 8基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30320次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537793次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233046次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多