电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示
电子发烧友网>电子资料下载>电子资料>Adlik加速深度学习推理的工具包

Adlik加速深度学习推理的工具包

2022-06-16 | zip | 16.01 MB | 次下载 | 免费

资料介绍

授权协议 Apache-2.0
开发语言 C/C++ Python
操作系统 跨平台
软件类型 开源软件

软件简介

Adlik 是深度学习模型的端到端优化框架。Adlik 的目标是在云和嵌入式环境中加速深度学习推理过程。

poYBAGKoB6qAfljjAAHaFoWjb9Q078.png

使用 Adlik 框架,不同的深度学习模型可以以非常灵活和简单的方式以高性能部署到不同的平台。

pYYBAGKoB6uASnSeAAERBuS6wOQ017.png

  1. 在云环境中,编译后的模型和 Adlik 推理引擎应构建为 docker 镜像,并部署为容器。

  2. 在边缘环境中,应将 Adlik 推理引擎部署为容器。编译后的模型应该转移到边缘环境,Adlik 推理引擎应该自动更新和加载模型。

  3. 在设备环境中,Adlik Inference Engine 和编译后的模型应编译为二进制文件。想要在设备上运行模型推理的用户应该将用户定义的 AI 函数和 Adlik 二进制文件链接到执行文件,并直接运行。

构建

本指南用于在 Ubuntu 系统上构建 Adlik 。

首先,安装 Git 和 Bazel

然后,克隆 Adlik 并将工作目录更改为源目录:

git clone https://github.com/ZTE/Adlik.git
cd Adlik

构建客户端

  1. 安装以下软件包:

  2. 构建客户端:

    bazel build //adlik_serving/clients/python:build_pip_package -c opt
  3. 构建 pip 包:

    mkdir /tmp/pip-packages && bazel-bin/adlik_serving/clients/python/build_pip_package /tmp/pip-packages

构建服务

首先,安装以下软件包:

  • automake
  • libtbb2
  • libtool
  • make
  • python3-six

使用 OpenVINO 运行时构建服务

  1. 从 OpenVINO 安装intel-openvino-runtime-ubuntu-包 。

  2. 假设 OpenVINO 的安装路径为/opt/intel/openvino_VERSION,运行如下命令:

    export INTEL_CVSDK_DIR=/opt/intel/openvino_VERSION
    export InferenceEngine_DIR=$INTEL_CVSDK_DIR/deployment_tools/inference_engine/share
    bazel build //adlik_serving \
        --config=openvino \
        -c opt
    

使用 TensorFlow CPU 运行时构建服务

  1. 运行以下命令:

    bazel build //adlik_serving \ 
        --config=tensorflow-cpu \ 
        -c opt

使用 TensorFlow GPU 运行时构建服务

假设使用 CUDA 版本 11.0 构建。

  1. 这里和 这里安装以下软件包 :

    • cuda-cupti-dev-11-0
    • libcublas-dev-11-0
    • libcudnn8=*+cuda11.0
    • libcudnn8-dev=*+cuda11.0
    • libcufft-dev-11-0
    • libcurand-dev-11-0
    • libcusolver-dev-11-0
    • libcusparse-dev-11-0
    • libnvinfer7=7.2.*+cuda11.0
    • libnvinfer-dev=7.2.*+cuda11.0
    • libnvinfer-plugin7=7.2.*+cuda11.0
    • libnvinfer-plugin-dev=7.2.*+cuda11.0
  2. 运行以下命令:

    env TF_CUDA_VERSION=11.0 TF_NEED_TENSORRT=1 \ 
        bazel build //adlik_serving \ 
            --config=tensorflow-gpu \ 
            -c opt \ 
            --incompatible_use_specific_tool_files=false

使用 TensorFlow Lite CPU 运行时构建服务

  1. 运行以下命令:

    bazel build //adlik_serving \ 
        --config=tensorflow-lite-cpu \ 
        -c opt

使用 TensorRT 运行时构建服务

假设使用 CUDA 版本 11.0 构建。

  1. 这里和 这里安装以下软件包 :

    • cuda-cupti-dev-11-0
    • cuda-nvml-dev-11-0
    • cuda-nvrtc-11-0
    • libcublas-dev-11-0
    • libcudnn8=*+cuda11.0
    • libcudnn8-dev=*+cuda11.0
    • libcufft-dev-11-0
    • libcurand-dev-11-0
    • libcusolver-dev-11-0
    • libcusparse-dev-11-0
    • libnvinfer7=7.2.*+cuda11.0
    • libnvinfer-dev=7.2.*+cuda11.0
    • libnvonnxparsers7=7.2.*+cuda11.0
    • libnvonnxparsers-dev=7.2.*+cuda11.0
  2. 运行以下命令:

    env TF_CUDA_VERSION=11.0 \ 
        bazel build //adlik_serving \ 
            --config=TensorRT \ 
            -c opt \ 
            --action_env=LIBRARY_PATH=/usr/local/cuda-11.0/lib64/stubs \ 
            --incompatible_use_specific_tool_files=false

使用 TF-TRT 运行时构建服务

假设使用 CUDA 版本 11.0 构建。

  1. 这里和 这里安装以下软件包 :

    • cuda-cupti-dev-11-0
    • libcublas-dev-11-0
    • libcudnn8=*+cuda11.0
    • libcudnn8-dev=*+cuda11.0
    • libcufft-dev-11-0
    • libcurand-dev-11-0
    • libcusolver-dev-11-0
    • libcusparse-dev-11-0
    • libnvinfer7=7.2.*+cuda11.0
    • libnvinfer-dev=7.2.*+cuda11.0
    • libnvinfer-plugin7=7.2.*+cuda11.0
    • libnvinfer-plugin-dev=7.2.*+cuda11.0
  2. 运行以下命令:

    env TF_CUDA_VERSION=11.0 TF_NEED_TENSORRT=1 \ 
        bazel build //adlik_serving \ 
            --config=tensorflow-tensorrt \ 
            -c opt \ 
            --incompatible_use_specific_tool_files=false

使用 Tvm 运行时构建服务

  1. 安装以下软件包:

    • build-essential
    • cmake
    • tvm
  2. 运行以下命令:

    bazel build //adlik_serving \ 
       --config=tvm \ 
       -c opt
 

下载该资料的人也在下载 下载该资料的人还在阅读
更多 >

评论

查看更多

下载排行

本周

  1. 1山景DSP芯片AP8248A2数据手册
  2. 1.06 MB  |  532次下载  |  免费
  3. 2RK3399完整板原理图(支持平板,盒子VR)
  4. 3.28 MB  |  339次下载  |  免费
  5. 3TC358743XBG评估板参考手册
  6. 1.36 MB  |  330次下载  |  免费
  7. 4DFM软件使用教程
  8. 0.84 MB  |  295次下载  |  免费
  9. 5元宇宙深度解析—未来的未来-风口还是泡沫
  10. 6.40 MB  |  227次下载  |  免费
  11. 6迪文DGUS开发指南
  12. 31.67 MB  |  194次下载  |  免费
  13. 7元宇宙底层硬件系列报告
  14. 13.42 MB  |  182次下载  |  免费
  15. 8FP5207XR-G1中文应用手册
  16. 1.09 MB  |  178次下载  |  免费

本月

  1. 1OrCAD10.5下载OrCAD10.5中文版软件
  2. 0.00 MB  |  234315次下载  |  免费
  3. 2555集成电路应用800例(新编版)
  4. 0.00 MB  |  33566次下载  |  免费
  5. 3接口电路图大全
  6. 未知  |  30323次下载  |  免费
  7. 4开关电源设计实例指南
  8. 未知  |  21549次下载  |  免费
  9. 5电气工程师手册免费下载(新编第二版pdf电子书)
  10. 0.00 MB  |  15349次下载  |  免费
  11. 6数字电路基础pdf(下载)
  12. 未知  |  13750次下载  |  免费
  13. 7电子制作实例集锦 下载
  14. 未知  |  8113次下载  |  免费
  15. 8《LED驱动电路设计》 温德尔著
  16. 0.00 MB  |  6656次下载  |  免费

总榜

  1. 1matlab软件下载入口
  2. 未知  |  935054次下载  |  免费
  3. 2protel99se软件下载(可英文版转中文版)
  4. 78.1 MB  |  537798次下载  |  免费
  5. 3MATLAB 7.1 下载 (含软件介绍)
  6. 未知  |  420027次下载  |  免费
  7. 4OrCAD10.5下载OrCAD10.5中文版软件
  8. 0.00 MB  |  234315次下载  |  免费
  9. 5Altium DXP2002下载入口
  10. 未知  |  233046次下载  |  免费
  11. 6电路仿真软件multisim 10.0免费下载
  12. 340992  |  191187次下载  |  免费
  13. 7十天学会AVR单片机与C语言视频教程 下载
  14. 158M  |  183279次下载  |  免费
  15. 8proe5.0野火版下载(中文版免费下载)
  16. 未知  |  138040次下载  |  免费