电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示
电子发烧友网>电子资料下载>电子资料>PatrickStar分布式深度学习训练工具

PatrickStar分布式深度学习训练工具

2022-06-16 | zip | 0.81 MB | 次下载 | 2积分

资料介绍

授权协议 BSD
开发语言 C/C++ Python
操作系统 跨平台
软件类型 开源软件

软件简介

PatrickStar 是一款腾讯开发的分布式深度学习训练工具,它的设计目标是支持以 GPT、Bert 为代表的超大预训练模型训练。

用法

PatrickStar 基于 PyTorch,这使得迁移 pytorch 项目变得容易。以下是 PatrickStar 的示例:

from patrickstar.runtime import initialize_engine

config = {
    "optimizer": {
        "type": "Adam",
        "params": {
            "lr": 0.001,
            "betas": (0.9, 0.999),
            "eps": 1e-6,
            "weight_decay": 0,
            "use_hybrid_adam": True,
        },
    },
    "fp16": {  # loss scaler params
        "enabled": True,
        "loss_scale": 0,
        "initial_scale_power": 2 ** 3,
        "loss_scale_window": 1000,
        "hysteresis": 2,
        "min_loss_scale": 1,
    },
    "default_chunk_size": 64 * 1024 * 1024,
    "release_after_init": True,
    "use_cpu_embedding": False,
}

def model_func():
    # MyModel is a derived class for torch.nn.Module
    return MyModel(...)

model, optimizer = initialize_engine(model_func=model_func, local_rank=0, config=config)

...

for data in dataloader:
    optimizer.zero_grad()

    loss = model(data)
    model.backward(loss)
    optimizer.step()

使用与 DeepSpeed 配置 JSON 相同的config格式,主要包括优化器、损失缩放器和一些 PatrickStar 特定配置的参数

引用我们

@article{fang2021patrickstar,
  title={PatrickStar: Parallel Training of Pre-trained Models via a Chunk-based Memory Management},
  author={Fang, Jiarui and Yu, Yang and Zhu, Zilin and Li, Shenggui and You, Yang and Zhou, Jie},
  journal={arXiv preprint arXiv:2108.05818},
  year={2021}
}
 

下载该资料的人也在下载 下载该资料的人还在阅读
更多 >

评论

查看更多

下载排行

本周

  1. 1山景DSP芯片AP8248A2数据手册
  2. 1.06 MB  |  532次下载  |  免费
  3. 2RK3399完整板原理图(支持平板,盒子VR)
  4. 3.28 MB  |  339次下载  |  免费
  5. 3TC358743XBG评估板参考手册
  6. 1.36 MB  |  330次下载  |  免费
  7. 4DFM软件使用教程
  8. 0.84 MB  |  295次下载  |  免费
  9. 5元宇宙深度解析—未来的未来-风口还是泡沫
  10. 6.40 MB  |  227次下载  |  免费
  11. 6迪文DGUS开发指南
  12. 31.67 MB  |  194次下载  |  免费
  13. 7元宇宙底层硬件系列报告
  14. 13.42 MB  |  182次下载  |  免费
  15. 8FP5207XR-G1中文应用手册
  16. 1.09 MB  |  178次下载  |  免费

本月

  1. 1OrCAD10.5下载OrCAD10.5中文版软件
  2. 0.00 MB  |  234315次下载  |  免费
  3. 2555集成电路应用800例(新编版)
  4. 0.00 MB  |  33566次下载  |  免费
  5. 3接口电路图大全
  6. 未知  |  30323次下载  |  免费
  7. 4开关电源设计实例指南
  8. 未知  |  21549次下载  |  免费
  9. 5电气工程师手册免费下载(新编第二版pdf电子书)
  10. 0.00 MB  |  15349次下载  |  免费
  11. 6数字电路基础pdf(下载)
  12. 未知  |  13750次下载  |  免费
  13. 7电子制作实例集锦 下载
  14. 未知  |  8113次下载  |  免费
  15. 8《LED驱动电路设计》 温德尔著
  16. 0.00 MB  |  6656次下载  |  免费

总榜

  1. 1matlab软件下载入口
  2. 未知  |  935054次下载  |  免费
  3. 2protel99se软件下载(可英文版转中文版)
  4. 78.1 MB  |  537798次下载  |  免费
  5. 3MATLAB 7.1 下载 (含软件介绍)
  6. 未知  |  420027次下载  |  免费
  7. 4OrCAD10.5下载OrCAD10.5中文版软件
  8. 0.00 MB  |  234315次下载  |  免费
  9. 5Altium DXP2002下载入口
  10. 未知  |  233046次下载  |  免费
  11. 6电路仿真软件multisim 10.0免费下载
  12. 340992  |  191187次下载  |  免费
  13. 7十天学会AVR单片机与C语言视频教程 下载
  14. 158M  |  183279次下载  |  免费
  15. 8proe5.0野火版下载(中文版免费下载)
  16. 未知  |  138040次下载  |  免费