电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示
创作
电子发烧友网>电子资料下载>电子资料>PyTorch教程16.2之情感分析:使用递归神经网络

PyTorch教程16.2之情感分析:使用递归神经网络

2023-06-05 | pdf | 0.20 MB | 次下载 | 免费

资料介绍

与词相似度和类比任务一样,我们也可以将预训练词向量应用于情感分析。由于第 16.1 节中的 IMDb 评论数据集 不是很大,使用在大规模语料库上预训练的文本表示可能会减少模型的过度拟合。作为图 16.2.1所示的具体示例 ,我们将使用预训练的 GloVe 模型表示每个标记,并将这些标记表示输入多层双向 RNN 以获得文本序列表示,并将其转换为情感分析输出 Maas,2011对于相同的下游应用程序,我们稍后会考虑不同的架构选择。

https://file.elecfans.com/web2/M00/A9/CD/poYBAGR9PJyAB1TZAAKGTdnYvUk151.svg

图 16.2.1本节将预训练的 GloVe 提供给基于 RNN 的架构进行情绪分析。

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 64
train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)
from mxnet import gluon, init, np, npx
from mxnet.gluon import nn, rnn
from d2l import mxnet as d2l

npx.set_np()

batch_size = 64
train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)

16.2.1。用 RNN 表示单个文本

在文本分类任务中,例如情感分析,变长的文本序列将被转换为固定长度的类别。在下面的BiRNN类中,虽然文本序列的每个标记都通过嵌入层 ( self.embedding) 获得其单独的预训练 GloVe 表示,但整个序列由双向 RNN ( self.encoder) 编码。更具体地说,双向 LSTM 在初始和最终时间步的隐藏状态(在最后一层)被连接起来作为文本序列的表示。然后通过具有两个输出(“正”和“负”)的全连接层 ( self.decoder) 将该单一文本表示转换为输出类别。

class BiRNN(nn.Module):
  def __init__(self, vocab_size, embed_size, num_hiddens,
         num_layers, **kwargs):
    super(BiRNN, self).__init__(**kwargs)
    self.embedding = nn.Embedding(vocab_size, embed_size)
    # Set `bidirectional` to True to get a bidirectional RNN
    self.encoder = nn.LSTM(embed_size, num_hiddens, num_layers=num_layers,
                bidirectional=True)
    self.decoder = nn.Linear(4 * num_hiddens, 2)

  def forward(self, inputs):
    # The shape of `inputs` is (batch size, no. of time steps). Because
    # LSTM requires its input's first dimension to be the temporal
    # dimension, the input is transposed before obtaining token
    # representations. The output shape is (no. of time steps, batch size,
    # word vector dimension)
    embeddings = self.embedding(inputs.T)
    self.encoder.flatten_parameters()
    # Returns hidden states of the last hidden layer at different time
    # steps. The shape of `outputs` is (no. of time steps, batch size,
    # 2 * no. of hidden units)
    outputs, _ = self.encoder(embeddings)
    # Concatenate the hidden states at the initial and final time steps as
    # the input of the fully connected layer. Its shape is (batch size,
    # 4 * no. of hidden units)
    encoding = torch.cat((outputs[0], outputs[-1]), dim=1)
    outs = self.decoder(encoding)
    return outs
class BiRNN(nn.Block):
  def __init__(self, vocab_size, embed_size, num_hiddens,
         num_layers, **kwargs):
    super(BiRNN, self).__init__(**kwargs)
    self.embedding = nn.Embedding(vocab_size, embed_size)
    # Set `bidirectional` to True to get a bidirectional RNN
    self.encoder = rnn.LSTM(num_hiddens, num_layers=num_layers,
                bidirectional=True, input_size=embed_size)
    self.decoder = nn.Dense(2)

  def forward(self, inputs):
    # The shape of `inputs` is (batch size, no. of time steps). Because
    # LSTM requires its input's first dimension to be the temporal
    # dimension, the input is transposed before obtaining token
    # representations. The output shape is (no. of time steps, batch size,
    # word vector dimension)
    embeddings = self.embedding(inputs.T)
    # Returns hidden states of the last hidden layer at different time
    # steps. The shape of `outputs` is (no. of time steps, batch size,
    # 2 * no. of hidden units)
    outputs = self.encoder(embeddings)
    # Concatenate the hidden states at the initial and final time steps as
    # the input of the fully connected layer. Its shape is (batch size,
    # 4 * no. of hidden units)
    encoding = np.concatenate((outputs[0], outputs[-1]), axis=1)
    outs = self.decoder(encoding)
    return outs

让我们构建一个具有两个隐藏层的双向 RNN 来表示用于情感分析的单个文本。

embed_size, num_hiddens, num_layers, devices = 100, 100, 2, d2l.try_all_gpus()
net = BiRNN(len(vocab), embed_size, num_hiddens, num_layers)

def init_weights(module):
  if type(module) == nn.Linear:
    nn.init.xavier_uniform_(module.weight)
  if type(module) == nn.LSTM:
    for param in module._flat_weights_names:
      if "weight" in param:
        nn.init.xavier_uniform_(module._parameters[param])
net.apply(init_weights);
embed_size, num_hiddens, num_layers, devices = 100, 100, 2, d2l.try_all_gpus()
net = BiRNN(len(vocab), embed_size, num_hiddens, num_layers)

net.initialize(init.Xavier(), ctx=devices)

16.2.2。加载预训练词向量

embed_size下面我们为词汇表中的标记加载预训练的 100 维(需要与 一致)GloVe 嵌入。

glove_embedding = d2l.TokenEmbedding('glove.6b.100d')
Downloading ../data/glove.6B.100d.zip from http://d2l-data.s3-accelerate.amazonaws.com/glove.6B.100d.zip...
glove_embedding = d2l.TokenEmbedding('glove.6b.100d')

打印词汇表中所有标记的向量形状。

embeds = glove_embedding[vocab.idx_to_token]
embeds.shape
torch.Size([49346, 100])
embeds = glove_embedding[vocab.idx_to_token]
embeds.shape
(49346, 100)

我们使用这些预训练的词向量来表示评论中的标记,并且不会在训练期间更新这些向量。

net.embedding.weight.data.copy_(embeds)
net.embedding.weight.requires_grad = False
net.embedding.weight.set_data(embeds)
net.embedding.collect_params().setattr('grad_req', 'null')

16.2.3。训练和评估模型

现在我们可以训练双向 RNN 进行情感分析。

lr, num_epochs = 0.01, 5
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction="none")
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)
loss 0.311, train acc 0.872, test acc 0.850
574.5 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)]
https://file.elecfans.com/web2/M00/A9/CD/poYBAGR9PJ6AJIk8AAECA4Wy71Y322.svg
lr, num_epochs = 0.01, 5
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})
loss = gluon.loss.SoftmaxCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)
loss 0.428, train acc 0.806, test acc 0.791
488.5 examples/sec on [gpu(0), gpu(1)]
https://file.elecfans.com/web2/M00/AA/48/pYYBAGR9PKGAE9v0AAEB8Qpd38M668.svg

我们定义了以下函数来使用经过训练的模型预测文本序列的情绪net


下载该资料的人也在下载 下载该资料的人还在阅读
更多 >

评论

查看更多

下载排行

本周

  1. 1山景DSP芯片AP8248A2数据手册
  2. 1.06 MB  |  532次下载  |  免费
  3. 2RK3399完整板原理图(支持平板,盒子VR)
  4. 3.28 MB  |  339次下载  |  免费
  5. 3TC358743XBG评估板参考手册
  6. 1.36 MB  |  330次下载  |  免费
  7. 4DFM软件使用教程
  8. 0.84 MB  |  295次下载  |  免费
  9. 5元宇宙深度解析—未来的未来-风口还是泡沫
  10. 6.40 MB  |  227次下载  |  免费
  11. 6迪文DGUS开发指南
  12. 31.67 MB  |  194次下载  |  免费
  13. 7元宇宙底层硬件系列报告
  14. 13.42 MB  |  182次下载  |  免费
  15. 8FP5207XR-G1中文应用手册
  16. 1.09 MB  |  178次下载  |  免费

本月

  1. 1OrCAD10.5下载OrCAD10.5中文版软件
  2. 0.00 MB  |  234315次下载  |  免费
  3. 2555集成电路应用800例(新编版)
  4. 0.00 MB  |  33566次下载  |  免费
  5. 3接口电路图大全
  6. 未知  |  30323次下载  |  免费
  7. 4开关电源设计实例指南
  8. 未知  |  21549次下载  |  免费
  9. 5电气工程师手册免费下载(新编第二版pdf电子书)
  10. 0.00 MB  |  15349次下载  |  免费
  11. 6数字电路基础pdf(下载)
  12. 未知  |  13750次下载  |  免费
  13. 7电子制作实例集锦 下载
  14. 未知  |  8113次下载  |  免费
  15. 8《LED驱动电路设计》 温德尔著
  16. 0.00 MB  |  6656次下载  |  免费

总榜

  1. 1matlab软件下载入口
  2. 未知  |  935054次下载  |  免费
  3. 2protel99se软件下载(可英文版转中文版)
  4. 78.1 MB  |  537798次下载  |  免费
  5. 3MATLAB 7.1 下载 (含软件介绍)
  6. 未知  |  420027次下载  |  免费
  7. 4OrCAD10.5下载OrCAD10.5中文版软件
  8. 0.00 MB  |  234315次下载  |  免费
  9. 5Altium DXP2002下载入口
  10. 未知  |  233046次下载  |  免费
  11. 6电路仿真软件multisim 10.0免费下载
  12. 340992  |  191187次下载  |  免费
  13. 7十天学会AVR单片机与C语言视频教程 下载
  14. 158M  |  183279次下载  |  免费
  15. 8proe5.0野火版下载(中文版免费下载)
  16. 未知  |  138040次下载  |  免费