资料介绍
Using deep neural networks to learn effective feature representations has become popular in face recognition [12, 20, 17, 22, 14, 13, 18, 21, 19, 15]。 With better deep network architectures and supervisory methods, face recognition accuracy has been boosted rapidly in recent years. In particular, a few noticeable face representation learning techniques are evolved recently. An early effort of learning deep face representation in a supervised way was to employ face verification as the supervisory signal [12], which required classifying a pair of training images as being the same person or not. It greatly reduced the intra-personal variations in the face representation. Then learning discriminative deep face representation through large-scale face identity classification (face identification) was proposed by DeepID [14] and DeepFace [17, 18]。 By classifying training images into a large amount of identities, the last hidden layer of deep neural networks would form rich identity-related features. With this technique, deep learning got close to human performance for the first time on tightly cropped face images of the extensively evaluated LFW face verification dataset [6]。 However, the learned face representation could also contain significant intrapersonal variations. Motivated by both [12] and [14], an approach of learning deep face representation by joint face identification-verification was proposed in DeepID2 [13] and was further improved in DeepID2+ [15]。 Adding verification supervisory signals significantly reduced intrapersonal variations, leading to another significant improvement on face recognition performance. Human face verification accuracy on the entire face images of LFW was surpassed finally [13, 15]。 Both GoogLeNet [16] and VGG [10] ranked in the top in general image classification in ILSVRC 2014. This motivates us to investigate whether the superb learning capacity brought by very deep net structures can also benefit face recognition.
- 基于粒神经网络与遗传算法优化的人脸识别算法 0次下载
- 基于改进CNN网络与集成学习的人脸识别算法 6次下载
- 基于域适应的卷积神经网络人脸识别结构 7次下载
- 基于剪枝与量化的卷积神经网络压缩算法 6次下载
- 基于深度学习的快速人脸识别算法及模型 13次下载
- 3小时学习神经网络与深度学习课件下载 0次下载
- 基于深度神经网络的文本分类分析 37次下载
- 如何使用深度神经网络实现实时人脸识别 7次下载
- 基于深度神经网络的特征加权融合人脸识别方法DLWF 2次下载
- 基于BP神经网络的人脸识别方法 5次下载
- 基于BP神经网络和局部与整体奇异值分解的人脸识别 24次下载
- 改进PSO优化神经网络算法的人体姿态识别_何佳佳 1次下载
- 一种卷积神经网络和极限学习机相结合的人脸识别方法_余丹 0次下载
- 基于BP神经网络的2DPCA人脸识别算法
- 基于DCT-BP神经网络的人脸表情识别
- 残差网络是深度神经网络吗 702次阅读
- BP神经网络和人工神经网络的区别 338次阅读
- 卷积神经网络在人脸识别中的应用 284次阅读
- 深度神经网络与基本神经网络的区别 307次阅读
- 深度神经网络的设计方法 235次阅读
- 卷积神经网络与循环神经网络的区别 866次阅读
- 神经网络优化算法有哪些 268次阅读
- 深度学习与卷积神经网络的应用 542次阅读
- 神经网络在图像识别中的应用 394次阅读
- 神经网络架构有哪些 321次阅读
- 如何训练和优化神经网络 261次阅读
- 详解深度学习、神经网络与卷积神经网络的应用 1557次阅读
- 深度神经网络的实现机理与决策逻辑难以理解 2799次阅读
- BP神经网络概述 4.4w次阅读
- 卷积神经网络CNN架构分析-LeNet 2687次阅读
下载排行
本周
- 1TC358743XBG评估板参考手册
- 1.36 MB | 330次下载 | 免费
- 2开关电源基础知识
- 5.73 MB | 11次下载 | 免费
- 3嵌入式linux-聊天程序设计
- 0.60 MB | 3次下载 | 免费
- 4DIY动手组装LED电子显示屏
- 0.98 MB | 3次下载 | 免费
- 5基于FPGA的C8051F单片机开发板设计
- 0.70 MB | 2次下载 | 免费
- 651单片机窗帘控制器仿真程序
- 1.93 MB | 2次下载 | 免费
- 751单片机大棚环境控制器仿真程序
- 1.10 MB | 2次下载 | 免费
- 8基于51单片机的RGB调色灯程序仿真
- 0.86 MB | 2次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234315次下载 | 免费
- 2555集成电路应用800例(新编版)
- 0.00 MB | 33566次下载 | 免费
- 3接口电路图大全
- 未知 | 30323次下载 | 免费
- 4开关电源设计实例指南
- 未知 | 21549次下载 | 免费
- 5电气工程师手册免费下载(新编第二版pdf电子书)
- 0.00 MB | 15349次下载 | 免费
- 6数字电路基础pdf(下载)
- 未知 | 13750次下载 | 免费
- 7电子制作实例集锦 下载
- 未知 | 8113次下载 | 免费
- 8《LED驱动电路设计》 温德尔著
- 0.00 MB | 6656次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935054次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537798次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420027次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234315次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233046次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191186次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183279次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138040次下载 | 免费
评论
查看更多