资料介绍
Table of Contents
BeMicro FPGA Project for AD7366 with Nios driver
Supported Devices
Evaluation Boards
Overview
This lab presents the steps to setup an environment for using the EVAL-AD7366SDZ evaluation board together with the BeMicro SDK USB stick and the Nios II Embedded Development Suite (EDS). Below is presented a picture of the EVAL-AD7366SDZ Evaluation Board with the BeMicro SDK Platform.
For component evaluation and performance purposes, as opposed to quick prototyping, the user is directed to use the part evaluation setup. This consists of:
- 1. A controller board like the SDP-B ( EVAL-SDP-CS1Z)
- 2. The component SDP compatible product evaluation board
- 3. Corresponding PC software ( shipped with the product evaluation board)
The SDP-B controller board is part of Analog Devices System Demonstration Platform (SDP). It provides a high speed USB 2.0 connection from the PC to the component evaluation board. The PC runs the evaluation software. Each evaluation board, which is an SDP compatible daughter board, includes the necessary installation file required for performance testing.
Note: it is expected that the analog performance on the two platforms may differ.
Below is presented a picture of SDP-B Controller Board with the EVAL-AD7366SDZ Evaluation Board.
The EVAL-AD7366SDZ evaluation board is a member of a growing number of boards available for the SDP. It was designed to help customers evaluate performance or quickly prototype new AD7366 circuits and reduce design time.
The AD7366 is a dual 12-bit, high speed, low power, successive approximation analog-to-digital converter that feature throughput rates up to 1 MSPS. The device contains two ADCs, each preceded by a 2-channel multiplexer, and a low noise, wide bandwidth track-and-hold amplifier. The AD7366 is fabricated on the Analog Devices, Inc., industrial CMOS process (iCMOS), which is a technology platform combining the advantages of low and high voltage CMOS. The iCMOS process allows the AD7366 to accept high voltage bipolar signals in addition to reducing power consumption and package size. The AD7366 can accept true bipolar analog input signals in the ±10 V range, ±5 V range, and 0 V to 10 V range.
More information
- AD7366 Product Info - pricing, samples, datasheet
- EVAL-AD7366SDZ evaluation board user guide
Getting Started
The first objective is to ensure that you have all of the items needed and to install the software tools so that you are ready to create and run the evaluation project.
Hardware Items
Below is presented the list of required hardware items:
- BeMicro SDK/SDP Interposer adapter board
- EVAL-AD7366SDZ evaluation board
- Intel Pentium III or compatible Windows PC, running at 866MHz or faster, with a minimum of 512MB of system memory
Software Tools
Below is presented the list of required software tools:
- Quartus II Web Edition design software v12.0sp2
- Nios II EDS v12.0sp2
The Quartus II design software and the Nios II EDS is available via the Altera Complete Design Suite DVD or by downloading from the web.
Downloads
Extract the Lab Files
Create a folder called “ADIEvalBoardLab” on your PC and extract the ad7366_evalboardlab.zip archive to this folder. Make sure that there are NO SPACES in the directory path. After extracting the archive the following folders should be present in the ADIEvalBoardLab folder: FPGA, Hdl Software, DataCapture, NiosCpu.
Folder | Description |
---|---|
FPGA | Contains all the files necessary to program the BeMicro FPGA board in order to run the evaluation project. By executing the script program_fpga.bat the FPGA will be programmed with the evaluation project. New NIOS II applications can be created using the files from this folder. The ip subfolder contains the AD7366 NIOS II peripheral's source code. |
Hdl | Contains the source files for the AD7366 HDL driver: - The doc subfolder contains a brief documentation for the driver. - The src subfolder contains the HDL source files. - The tb folder contains the sources of the driver's testbench. |
NiosCpu | Contains the Quartus evaluation project source files . The ip subfolder contains the AD7366 Nios2 peripheral source code. |
Software | Contains the source files of the Nios2 SBT evaluation project. |
DataCapture | Contains the script files used for data acquisition |
Install the USB-Blaster Device Driver
After the Quartus II and Nios II software packages are installed, you can plug the BeMicro SDK board into your USB port. Your Windows PC will find the new hardware and try to install the driver.
Since Windows cannot locate the driver for the device the automatic installation will fail and the driver has to be installed manually. In the Device Manager right click on the USB-Blaster device and select Update Driver Software.
In the next dialog box select the option Browse my computer for driver software. A new dialog will open where it is possible to point to the driver’s location. Set the location to altera/
If Windows presents you with a message that the drivers have not passed Windows Logo testing, please click “Install this driver software anyway”. Upon installation completion a message will be displayed to inform that the installation is finished.
AD7366 Evaluation Project Overview
The evaluation project contains all the source files needed to build a system that can be used to configure the AD7366 and capture data from it. The system consists of a Nios II softcore processor that is implemented in the FPGA found on the BeMicro board and a PC application. The softcore controls the communication with the Device Under Test (DUT) and the data capture process. The captured data is saved into the onchip RAM of the BeMicro board and aftwerwards it is read by the PC application and saved into a comma separated values (.csv) file that can be used for further data analysis.
The following components are implemented in the FPGA design:
Name | Address | IRQ |
---|---|---|
CPU | 0x00000800 | - |
JTAG UART | 0x00000090 | 0 |
uC-Probe UART | 0x000000A0 | 1 |
EPCS FLASH CONTROLLER | 0x00001800 | 2 |
OnChip RAM | 0x00010000 | - |
LED GPIO | 0x00000100 | - |
GPIO | 0x00002080 | - |
CTRL GPIO | 0x000020A0 | - |
SYS ID | 0x00000040 | - |
TIMER | 0x00000060 | 3 |
AVALON MASTER | - | - |
Main PLL | 0x00000080 | - |
AD7366 0 | 0x00000120 | - |
Table 1 System components |
The Nios II processor contains a peripheral that implements the communication protocol with the DUT. The peripheral is divided into three logical modules: a module which implements the interface with the Avalon bus and the communication with the onchip RAM, a module which implements an Avalon master interface which is used to write data directly in the onchip RAM and a module which is the actual driver of the DUT. The driver can also be used as standalone in FPGA designs which do not contain a softcore. Following is presented a block diagram of the HDL driver and a description of the driver's interface signals.
Table 2 describes the ports of the AD7366 HDL driver.
Port | Direction | Width | Description |
---|---|---|---|
Clock and reset ports | |||
FPGA_CLK_I | IN | 1 | Main clock input. 100MHz |
RESET_I | IN | 1 | Active low reset signal |
IP control and data ports | |||
READ_MODE_I | IN | 1 | Signal used to select between single line read mode(HIGH) or dual read mode(LOW) |
DATA_O | OUT | 32 | Outputs the data read from the ADC. The most significant two bytes store the data from channel A, and the least significant two bytes store data from channel B |
DATA_RD_READY_O | OUT | 1 | Signals that at port DATA_O there is new data available |
AD7366 ports | |||
DOUTA_I | IN | 1 | The data output is supplied to each pin as a serial data stream. The bits are clocked out on the falling edge of the SCLK input. The data simultaneously appears on both pins from the simultaneous conversions of both ADCs |
DOUTB_I | IN | 1 | The data output is supplied to each pin as a serial data stream. The bits are clocked out on the falling edge of the SCLK input. The data simultaneously appears on both pins from the simultaneous conversions of both ADCs |
BUSY_I | IN | 1 | Busy transitions high when a conversion is started and remains high until the conversion is complete. It is not used by the current driver |
SCLK_O | OUT | 1 | This pin provides the SCLK for accessing the data from AD7366 |
CNVST_N_O | OUT | 1 | This pin is edge triggered. On the falling edge of this input, the track/hold goes into hold mode and the conversion is initiated. |
CS_N_O | OUT | 1 | This signal frames the serial data transfer. |
Table 2 AD7366 driver ports description |
The following figures present the timing diagram for the read operation for the AD7366 driver:
Table 3 describes the ports of the Avalon peripheral:
Port | Direction | Width | Description |
---|---|---|---|
Clock and reset ports | |||
CLK_I | IN | 1 | Main clock input |
RESET_I | IN | 1 | System reset |
Avalon Slave Interface | |||
AVALON_WRITEDATA_I | IN | 32 | Slave write data bus |
AVALON_WRITE_I | IN | 1 | Slave write data request |
AVALON_READ_I | IN | 1 | Slave read data request |
AVALON_ADDRESS_I | IN | 2 | Slave address bus |
AVALON_READDATA_O | OUT | 32 | Slave read data bus |
Avalon Master Interface | |||
AVALON_MASTER_WAITREQUEST | IN | 1 | Master wait request signal |
AVALON_MASTER_ADDRESS_O | OUT | 32 | Master address bus |
AVALON_MASTER_WRITE_O | OUT | 1 | Master write signal |
AVALON_MASTER_BYTEENABLE_O | OUT | 4 | Master byte enable signals |
AVALON_MASTER_WRITEDATA_O | OUT | 32 | Master write data bus |
External connectors | |||
DOUTA_I | IN | 1 | The data output is supplied to each pin as a serial data stream. The bits are clocked out on the falling edge of the SCLK input. The data simultaneously appears on both pins from the simultaneous conversions of both ADCs |
DOUTB_I | IN | 1 | The data output is supplied to each pin as a serial data stream. The bits are clocked out on the falling edge of the SCLK input. The data simultaneously appears on both pins from the simultaneous conversions of both ADCs |
BUSY_I | IN | 1 | Busy transitions high when a conversion is started and remains high until the conversion is complete. It is not used by the current driver |
SCLK_O | OUT | 1 | This pin provides the SCLK for accessing the data from AD7366 |
CNVST_N_O | OUT | 1 | This pin is edge triggered. On the falling edge of this input, the track/hold goes into hold mode and the conversion is initiated. |
CS_N_O | OUT | 1 | This signal frames the serial data transfer. |
Table 3 Avalon peripheral ports description |
Table 4 describes the registers of the Avalon peripheral:
Name | Offset | Width | Access | Description |
---|---|---|---|---|
CONTROL_REGISTER | 0 | 32 | RW | Bit 0 is used to start data acquisition Bit 1 is used to initiate software reset of the core Bit 2 is used to configure the Avalon write master core to write data to the same location Bit 3 is used to write data to the AD7366 driver |
ACQ_COUNT_REGISTER | 1 | 32 | RW | Register used to configure the number of samples to be acquired when acquisition is started |
BASE_REGISTER | 2 | 32 | RW | Register used to configure the base address of the memory location where the acquired data is to be written |
STATUS_REGISTER | 3 | 32 | R | Bit 0 is used to signal that the acquisition is complete Bit 1 is used to signal that the internal memory buffer has been overflown Bit 2 is used to signal that the user has performed a read of an unavailable register |
DUT_WRITE_REGISTER | 4 | 32 | RW | Data to be written to the ADC driver. The Least significant bit controls the READ_MODE_I pin from the AD7366 driver. READ_MODE_I is a signal used to select between single line read mode(HIGH) or dual read mode(LOW) |
Table 4 Avalon peripheral registers description |
Quick Evaluation
The next sections of this lab present all the steps needed to create a fully functional project that can be used for evaluating the operation of the ADI platform. It is possible to skip these steps and load into the FPGA an image that contains a fully functional system.The first step of the quick evaluation process is to program the FPGA with the image provided in the lab files. Before the image can be loaded the Quartus II Web Edition tool or the Quartus II Programmer must be installed on your computer. To load the FPGA image run the program_fpga.bat batch file located in the ADIEvalBoardLab/FPGA folder. After the image was loaded the system must be reset. Now the FPGA contains a fully functional system and it is possible to skip directly to the Demonstration Project User Interface section of this lab.
NIOS II Software Design
This section presents the steps for developing a software application that will run on the BeMicroSDK system and will be used for controlling and monitoring the operation of the ADI evaluation board.
Create a new project using the NIOS II Software Build Tools for Eclipse
Launch the Nios II SBT from the Start → All Programs → Altera 12.0sp2→ Nios II EDS 12.0sp2 → Nios II 12.0sp2 Software Build Tools for Eclipse (SBT).
NOTE: Windows 7 users will need to right-click and select Run as administrator. Another method is to right-click and select Properties and click on the Compatibility tab and select the Run This Program As An Administrator checkbox, which will make this a permanent change.
1. Initialize Eclipse workspace
- When Eclipse first launches, a dialog box appears asking what directory it should use for its workspace. It is useful to have a separate Eclipse workspace associated with each hardware project that is created in SOPC Builder. Browse to the ADIEvalBoardLab directory and click Make New Folder to create a folder for the software project. Name the new folder “eclipse_workspace”. After selecting the workspace directory, click OK and Eclipse will launch and the workbench will appear in the Nios II perspective.
2. Create a new software project in the SBT
- Select File → New → Nios II Application and BSP from Template.
- Click the Browse button in the SOPC Information File Name dialog box.
- Select the uC.sopcinfo file located in the ADIEvalBoardLab/FPGA directory.
- Set the name of the Application project to “ADIEvalBoard”.
- Select the Blank Project template under Project template.
- Click the Finish button.
The tool will create two new software project directories. Each Nios II application has 2 project directories in the Eclipse workspace.
- The application software project itself - this where the application lives.
- The second is the Board Support Package (BSP) project associated with the main application software project. This project will build the system library drivers for the specific SOPC system. This project inherits the name from the main software project and appends “_bsp” to that.
Since you chose the blank project template, there are no source files in the application project directory at this time. The BSP contains a directory of software drivers as well as a system.h header file, system initialization source code and other software infrastructure.
Configure the Board Support Package
- Configure the board support package to specify the properties of this software system by using the BSP Editor tool. These properties include what interface should be used for stdio and stderr messages, the memory in which stack and heap should be allocated and whether an operating system or network stack should be included with this BSP.
- Right click on the ADIEvalBoard_bsp project and select Nios II → BSP Editor… from the right-click menu.
The software project provided in this lab does not make use of an operating system. All stdout, stdin and stderr messages will be directed to the jtag_uart.
- Select the Common settings view. In the Common settings view, change the following settings:
- Select the jtag_uart for stdin, stdout and stderr messages. Note that you have more than one choice.
- Select none for the sys_clk_timer and timestamp_timer.
- Select File → Save to save the board support package configuration to the settings.bsp file.
- Click the Generate button to update the BSP.
- When the generate has completed, select File → Exit to close the BSP Editor.
Configure BSP Project Build Properties
In addition to the board support package settings configured using the BSP Editor, there are other compilation settings managed by the Eclipse environment such as compiler flags and optimization level.
- Right click on the ADIEvalBoard_bsp software project and select Properties from the right-click menu.
- On the left-hand menu, select Nios II BSP Properties.
- During compilation, the code may have various levels of optimization which is a tradeoff between code size and performance. Change the Optimization level setting to Level 2
- Since our software does not make use of C++, uncheck Support C++.
- Check the Reduced device drivers option
- Check the Small C library option
- Press Apply and OK to regenerate the BSP and close the Properties window.
Add source code to the project
In Windows Explorer locate the project directory which contains a directory called Software. In Windows Explorer select all the files and directories from the Software folder and drag and drop them into the Eclipse software project ADIEvalBoard.
- Select all the files and folders and drag them over the ADIEvalBoard project in the SBT window and drop the files onto the project folder.
- A dialog box will appear to select the desired operation. Select the option Copy files and folders and press OK.
- This should cause the source files to be physically copied into the file system location of the software project directory and register these source files within the Eclipse workspace so that they appear in the Project Explorer file listing.
Configure Application Project Build Properties
Just as you configured the optimization level for the BSP project, you should set the optimization level for the application software project ADIEvalBoard as well.
- Right click on the ADIEvalBoard software project and select Properties from the right-click menu.
- On the left-hand menu, select the Nios II Application Properties tab
- Change the Optimization level setting to Level 2.
- Press Apply and OK to save the changes.
Compile, Download and Run the Software Project
1. Build the Application and BSP Projects
- Right click the ADIEvalBoard_bsp software project and choose Build Project to build the board support package.
- When that build completes, right click the ADIEvalBoard application software project and choose Build Project to build the Nios II application.
These 2 steps will compile and build the associated board support package, then the actual application software project itself. The result of the compilation process will be an Executable and Linked Format (.elf) file for the application, the ADIEvalBoard.elf file.
2. Verify the Board Connection
The BeMicroSDK hardware is designed with a System ID peripheral. This peripheral is assigned a unique value based on when the hardware design was last modified in the SOPC Builder tool. SOPC Builder also places this information in the .sopcinfo hardware description file. The BSP is built based on the information in the .sopcinfo file.
- Select the ADIEvalBoard application software project.
- Select Run → Run Configurations…
- Select the Nios II Hardware configuration type.
- Press the New button to create a new configuration.
- Change the configuration name to BeMicroSDK and click Apply.
- On the Target Connection tab, press the Refresh Connections button. You may need to expand the window or scroll to the right to see this button.
- Select the jtag_uart as the Byte Stream Device for stdio.
- Check the Ignore mismatched system ID option.
- Check the Ignore mismatched system timestamp option.
3. Run the Software Project on the Target
To run the software project on the Nios II processor:
- Press the Run button in the Run Configurations window.
This will re-build the software project to create an up–to-date executable and then download the code into memory on the BeMicroSDK hardware. The debugger resets the Nios II processor, and it executes the downloaded code. Note that the code is verified in memory before it is executed.
The code size and start address might be different than the ones displayed in the above screenshot.
Demonstration Project User Interface
After the FPGA is correctly programmed the data acquisition process can start by executing the data_capture.bat script. The data_capture.tcl file can be modified so to use either single line or dual line data acquisition.
If the resulting csv file is opened with Microsoft Excel, the data will be displayed on a different number of columns, each column corresponding to a channel.
Note: If several consecutive data acquisitions are performed the captured data is appended to the Acquisition.csv file.
Troubleshooting
In case there is a communication problem with the board the follwing actions can be perfomed in order to try to fix the issues:
- Check that the evaluation board is powered.
- Check that the USB connection cable is properly connected to the device and to the computer and that the USB Blaster Device Driver driver is installed correctly. If the driver is not correctly installed perform the steps described in the Getting Started → Install te USB-Blaster Device Driver section.
More information
- Example questions:
- An error occurred while fetching this feed: http://ez.analog.com/community/feeds/allcontent/atom?community=2061
- 基于Nios驱动的AD5449的BeMicro FPGA方案
- 基于Nios驱动的AD7683的BeMicro FPGA方案
- 基于Nios驱动的AD7328 BeMicro FPGA方案
- 基于Nios驱动的AD7492的BeMicro FPGA方案
- 基于Nios驱动的AD7298 BeMicro FPGA方案
- 基于Nios驱动的AD7980 BeMicro FPGA方案
- 基于Nios驱动的AD5553 BeMicro FPGA方案
- 基于Nios驱动的AD5570 BeMicro FPGA方案
- 基于Nios驱动的AD5172 BeMicro FPGA方案
- 基于Nios驱动的AD7686 BeMicro FPGA方案
- 基于Nios驱动的AD5421 BeMicro FPGA方案
- 基于Nios驱动的AD7685 BeMicro FPGA方案
- 基于Nios驱动的AD5252的BeMicro FPGA方案
- 基于Nios驱动的AD7688的BeMicro FPGA方案
- 基于Nios驱动的AD5270 BeMicro FPGA方案
- 如何使用FPGA驱动并行ADC和并行DAC芯片 6753次阅读
- 利用Altera FPGA/Nios II资源实现MRI Spine图像分割算法 4002次阅读
- 基于FPGA的HEIF图像处理加速方案 2360次阅读
- 基于Nios II和uClinux实现远程测控服务器的设计 654次阅读
- 复合放大器实现高精度的高输出驱动能力 获得最佳的性能 1600次阅读
- 基于Nios软核的SoPC系统硬件设计 1227次阅读
- 如何实现FPGA接口的简化设计? 7068次阅读
- 在Nios II平台下搭建RTEMS嵌入式开发简析 1510次阅读
- 液晶显示屏设计方案:基于Nios嵌入式软核处理器 1081次阅读
- 基于FPGA的转移型面阵CCD驱动电路设计 3121次阅读
- 不用处理器就可以控制FPGA总线的方法你知道吗? 5051次阅读
- Altera宣布为高性能FPGA提供高效的电源转换解决方案 5028次阅读
- 基于Nios系统的Avalon总线概述 4785次阅读
- 基于ARM和FPGA的多路电机控制方案 1788次阅读
- 基于FPGA的多路光栅信号采集方案 2490次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1491次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 95次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 11次下载 | 免费
- 6100W短波放大电路图
- 0.05 MB | 4次下载 | 3 积分
- 7基于单片机和 SG3525的程控开关电源设计
- 0.23 MB | 4次下载 | 免费
- 8基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30320次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537793次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233046次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多