资料介绍
Table of Contents
AD7887 IIO ADC Linux Driver
Supported Devices
Reference Circuits
Evaluation Boards
Description
This is a Linux industrial I/O (IIO) subsystem driver, targeting single/multi channel serial interface ADCs. The industrial I/O subsystem provides a unified framework for drivers for many different types of converters and sensors using a number of different physical interfaces (i2c, spi, etc). See IIO for more information.
Source Code
Status
Files
Function | File |
---|---|
driver | drivers/iio/adc/ad7887.c |
include | include/linux/platform_data/ad7887.h |
Example platform device initialization
For compile time configuration, it’s common Linux practice to keep board- and application-specific configuration out of the main driver file, instead putting it into the board support file.
For devices on custom boards, as typical of embedded and SoC-(system-on-chip) based hardware, Linux uses platform_data to point to board-specific structures describing devices and how they are connected to the SoC. This can include available ports, chip variants, preferred modes, default initialization, additional pin roles, and so on. This shrinks the board-support packages (BSPs) and minimizes board and application specific #ifdefs in drivers.
The reference voltage may vary between boards and models. The platform_data for the device's “struct device” holds this information.
/** * struct ad7887_platform_data - AD7887 ADC driver platform data * @en_dual: Whether to use dual channel mode. If set to true AIN1 becomes the * second input channel, and Vref is internally connected to Vdd. If set to * false the device is used in single channel mode and AIN1/Vref is used as * VREF input. * @use_onchip_ref: Whether to use the on-chip reference. If set to true the * internal 2.5V reference is used. If set to false a external reference is * used. */ struct ad7887_platform_data { bool en_dual; bool use_onchip_ref; };
static struct ad7887_platform_data ad7887_pdata = { .en_dual = false, .use_onchip_ref = false, };
Specifying reference voltage via the regulator framework
This driver supports also an alternative way of specifying the reference voltage, by using the Linux regulator framework.
Below example specifies a 2.5 Volt reference for the SPI device 3 on SPI-Bus 0. (spi0.3)
#if defined(CONFIG_REGULATOR_FIXED_VOLTAGE) || defined(CONFIG_REGULATOR_FIXED_VOLTAGE_MODULE) static struct regulator_consumer_supply ad7887_consumer_supplies[] = { REGULATOR_SUPPLY("vcc", "spi0.3"), }; static struct regulator_init_data stamp_avdd_reg_init_data = { .constraints = { .name = "2V5", .valid_ops_mask = REGULATOR_CHANGE_STATUS, }, .consumer_supplies = ad7887_consumer_supplies, .num_consumer_supplies = ARRAY_SIZE(ad7887_consumer_supplies), }; static struct fixed_voltage_config stamp_vdd_pdata = { .supply_name = "board-2V5", .microvolts = 2500000, .gpio = -EINVAL, .enabled_at_boot = 0, .init_data = &stamp_avdd_reg_init_data, }; static struct platform_device brd_voltage_regulator = { .name = "reg-fixed-voltage", .id = -1, .num_resources = 0, .dev = { .platform_data = &stamp_vdd_pdata, }, }; #endif
static struct platform_device *board_devices[] __initdata = { #if defined(CONFIG_REGULATOR_FIXED_VOLTAGE) || defined(CONFIG_REGULATOR_FIXED_VOLTAGE_MODULE) &brd_voltage_regulator #endif };
static int __init board_init(void) { [--snip--] platform_add_devices(board_devices, ARRAY_SIZE(board_devices)); [--snip--] return 0; } arch_initcall(board_init);
Declaring SPI slave devices
Unlike PCI or USB devices, SPI devices are not enumerated at the hardware level. Instead, the software must know which devices are connected on each SPI bus segment, and what slave selects these devices are using. For this reason, the kernel code must instantiate SPI devices explicitly. The most common method is to declare the SPI devices by bus number.
This method is appropriate when the SPI bus is a system bus, as in many embedded systems, wherein each SPI bus has a number which is known in advance. It is thus possible to pre-declare the SPI devices that inhabit this bus. This is done with an array of struct spi_board_info, which is registered by calling spi_register_board_info().
For more information see: Documentation/spi/spi-summary
Depending on the converter IC used, you may need to set the modalias accordingly, matching your part name. It may also required to adjust max_speed_hz. Please consult the datasheet, for maximum spi clock supported by the device in question.
static struct spi_board_info board_spi_board_info[] __initdata = { #if defined(CONFIG_AD7887) || / defined(CONFIG_AD7887_MODULE) { /* the modalias must be the same as spi device driver name */ .modalias = "ad7887", /* Name of spi_driver for this device */ .max_speed_hz = 1000000, /* max spi clock (SCK) speed in HZ */ .bus_num = 0, /* Framework bus number */ .chip_select = 3, /* Framework chip select */ .platform_data = &ad7887_pdata, .controller_data = &ad7887_chip_info, /* Blackfin only */ .mode = SPI_MODE_3, }, #endif };
static int __init board_init(void) { [--snip--] spi_register_board_info(board_spi_board_info, ARRAY_SIZE(board_spi_board_info)); [--snip--] return 0; } arch_initcall(board_init);
Adding Linux driver support
Configure kernel with “make menuconfig” (alternatively use “make xconfig” or “make qconfig”)
The AD7887 Driver depends on CONFIG_SPI
Linux Kernel Configuration Device Drivers ---> ... <*> Industrial I/O support ---> --- Industrial I/O support ... Analog to digital converters ---> ... <*> Analog Devices AD7887 ADC driver ... ... ...
Hardware configuration
Driver testing
Each and every IIO device, typically a hardware chip, has a device folder under /sys/bus/iio/devices/iio:deviceX. Where X is the IIO index of the device. Under every of these directory folders reside a set of files, depending on the characteristics and features of the hardware device in question. These files are consistently generalized and documented in the IIO ABI documentation. In order to determine which IIO deviceX corresponds to which hardware device, the user can read the name file /sys/bus/iio/devices/iio:deviceX/name. In case the sequence in which the iio device drivers are loaded/registered is constant, the numbering is constant and may be known in advance.
This specifies any shell prompt running on the target
root:/> cd /sys/bus/iio/devices/ root:/sys/bus/iio/devices> ls iio:device0 trigger0 root:/sys/bus/iio/devices> cd iio:device0 root:/sys/devices/platform/bfin-spi.0/spi0.3/iio:device0> ls -l drwxr-xr-x 5 root root 0 Jan 1 00:00 buffer -r--r--r-- 1 root root 4096 Jan 1 00:00 in_voltage0_raw -r--r--r-- 1 root root 4096 Jan 1 00:00 in_voltage_scale -r--r--r-- 1 root root 4096 Jan 1 00:00 name lrwxrwxrwx 1 root root 0 Jan 1 00:00 subsystem -> ../../../../../bus/iio drwxr-xr-x 2 root root 0 Jan 1 00:00 trigger -rw-r--r-- 1 root root 4096 Jan 1 00:00 uevent
Show device name
This specifies any shell prompt running on the target
root:/sys/devices/platform/bfin-spi.0/spi0.3/iio:device0> cat name ad7887
Show scale
Description:
scale to be applied to in0_raw in order to obtain the measured voltage in millivolts.
This specifies any shell prompt running on the target
root:/sys/devices/platform/bfin-spi.0/spi0.3/iio:device0> cat in_voltage_scale 0.610
Show channel 0 measurement
Description:
Raw unscaled voltage measurement on channel 0
This specifies any shell prompt running on the target
root:/sys/devices/platform/bfin-spi.0/spi0.3/iio:device0> cat in_voltage0_raw 1492
U = in0_raw * in_scale = 1492 * 0.610 = 910.12 mV
Trigger management
If deviceX supports triggered sampling, it’s a so called trigger consumer and there will be an additional folder /sys/bus/iio/device/iio:deviceX/trigger. In this folder there is a file called current_trigger, allowing controlling and viewing the current trigger source connected to deviceX. Available trigger sources can be identified by reading the name file /sys/bus/iio/devices/triggerY/name. The same trigger source can connect to multiple devices, so a single trigger may initialize data capture or reading from a number of sensors, converters, etc.
Trigger Consumers:
Currently triggers are only used for the filling of software ring
buffers and as such any device supporting INDIO_RING_TRIGGERED has the
consumer interface automatically created.
Description: Read name of triggerY
This specifies any shell prompt running on the target
root:/sys/bus/iio/devices/triggerY/> cat name irqtrig56
Description: Make irqtrig56 (trigger using system IRQ56, likely a GPIO IRQ), to current trigger of deviceX
This specifies any shell prompt running on the target
root:/sys/bus/iio/devices/iio:deviceX/trigger> echo irqtrig56 > current_trigger
Description: Read current trigger source of deviceX
This specifies any shell prompt running on the target
root:/sys/bus/iio/devices/iio:deviceX/trigger> cat current_trigger irqtrig56
Available standalone trigger drivers
name | description |
---|---|
iio-trig-gpio | Provides support for using GPIO pins as IIO triggers. |
iio-trig-rtc | Provides support for using periodic capable real time clocks as IIO triggers. |
iio-trig-sysfs | Provides support for using SYSFS entry as IIO triggers. |
iio-trig-bfin-timer | Provides support for using a Blackfin timer as IIO triggers. |
Buffer management
This specifies any shell prompt running on the target
root:/sys/devices/platform/bfin-spi.0/spi0.3/iio:device0/buffer> ls enable length
The Industrial I/O subsystem provides support for various ring buffer based data acquisition methods. Apart from device specific hardware buffer support, the user can chose between two different software ring buffer implementations. One is the IIO lock free software ring, and the other is based on Linux kfifo. Devices with buffer support feature an additional sub-folder in the /sys/bus/iio/devices/deviceX/ folder hierarchy. Called deviceX:bufferY, where Y defaults to 0, for devices with a single buffer.
Every buffer implementation features a set of files:
length
Get/set the number of sample sets that may be held by the buffer.
enable
Enables/disables the buffer. This file should be written last, after length and selection of scan elements.
watermark
A single positive integer specifying the maximum number of scan
elements to wait for.
Poll will block until the watermark is reached.
Blocking read will wait until the minimum between the requested
read amount or the low water mark is available.
Non-blocking read will retrieve the available samples from the
buffer even if there are less samples then watermark level. This
allows the application to block on poll with a timeout and read
the available samples after the timeout expires and thus have a
maximum delay guarantee.
data_available
A read-only value indicating the bytes of data available in the
buffer. In the case of an output buffer, this indicates the
amount of empty space available to write data to. In the case of
an input buffer, this indicates the amount of data available for
reading.
length_align_bytes
Using the high-speed interface. DMA buffers may have an alignment requirement for the buffer length.
Newer versions of the kernel will report the alignment requirements
associated with a device through the `length_align_bytes` property.
scan_elements
The scan_elements directory contains interfaces for elements that will be captured for a single triggered sample set in the buffer.
This specifies any shell prompt running on the target
root:/sys/devices/platform/bfin-spi.0/spi0.3/iio:device0/scan_elements> ls in_voltage0_en in_voltage0_type timestamp_index in_voltage0_index timestamp_en timestamp_type
in_voltageX_en / in_voltageX-voltageY_en / timestamp_en:
Scan element control for triggered data capture.
Writing 1 will enable the scan element, writing 0 will disable it
in_voltageX_type / in_voltageX-voltageY_type / timestamp_type:
Description of the scan element data storage within the buffer
and therefore in the form in which it is read from user-space.
Form is [s|u]bits/storage-bits. s or u specifies if signed
(2's complement) or unsigned. bits is the number of bits of
data and storage-bits is the space (after padding) that it
occupies in the buffer. Note that some devices will have
additional information in the unused bits so to get a clean
value, the bits value must be used to mask the buffer output
value appropriately. The storage-bits value also specifies the
data alignment. So u12/16 will be a unsigned 12 bit integer
stored in a 16 bit location aligned to a 16 bit boundary.
For other storage combinations this attribute will be extended
appropriately.
in_voltageX_index / in_voltageX-voltageY_index / timestamp_index:
A single positive integer specifying the position of this
scan element in the buffer. Note these are not dependent on
what is enabled and may not be contiguous. Thus for user-space
to establish the full layout these must be used in conjunction
with all _en attributes to establish which channels are present,
and the relevant _type attributes to establish the data storage
format.
More Information
- IIO mailing list: linux [dash] iio [at] vger [dot] kernel [dot] org
- AD5449 IIO DAC Linux驱动程序
- AD5380 IIO多通道Linux驱动程序DAC
- AD7291 IIO ADC Linux驱动程序
- AD5421 IIO DAC Linux驱动程序
- AD5360 IIO多通道Linux驱动程序DAC
- AD7303 IIO DAC Linux驱动程序
- AD5446 IIO DAC Linux驱动程序
- AD7606 IIO多通道同步采样ADC Linux驱动程序
- ADIS16080 IIO偏航率陀螺仪Linux驱动程序
- IIO单通道串行ADC Linux驱动程序
- AD9834 IIO直接数字合成Linux驱动程序
- AD9832 IIO直接数字合成Linux驱动程序
- AD7998 IIO ADC Linux驱动程序
- AD5933 IIO阻抗转换器和网络分析仪Linux驱动程序
- AD5677R NanDAC+IIO Linux驱动程序
- 怎么编写Framebuffer驱动程序 403次阅读
- 自动删除SDK/Vitis下驱动程序的旧版本的Linux脚本 558次阅读
- 如何写一个Linux设备驱动程序 4314次阅读
- 米尔科技LINUX设备驱动程序教程 1966次阅读
- 嵌入式Linux内核的驱动程序开发是怎样的 1415次阅读
- 浅谈电脑驱动程序的工作原理 详解电脑驱动程序意义 2.9w次阅读
- 基于嵌入式Linux内核的系统设备驱动程序开发设计 1113次阅读
- 基于Linux2.6.30开发DS18B20的驱动程序的类型和文件操作接口函数详解 1377次阅读
- 可动态安装的Linux设备驱动程序 957次阅读
- 8255A驱动程序 3193次阅读
- 8155驱动程序 3057次阅读
- 深入了解USB驱动之总线驱动程序 8685次阅读
- Xilinx设备的驱动程序 7967次阅读
- 基于ADC081S051与51单片机的接口电路及驱动程序 4378次阅读
- PCI驱动程序开发实例 6702次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1491次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 95次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 11次下载 | 免费
- 6100W短波放大电路图
- 0.05 MB | 4次下载 | 3 积分
- 7基于单片机和 SG3525的程控开关电源设计
- 0.23 MB | 4次下载 | 免费
- 8基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30320次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537793次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233046次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多