资料介绍

Table of Contents
AD7980 - No-OS Driver for Microchip Microcontroller Platforms
Supported Devices
Evaluation Boards
Overview
The AD7980 is a 16-bit, successive approximation, analog-to-digital converter (ADC) that operates from a single power supply, VDD. It contains a low power, high speed, 16-bit sampling ADC and a versatile serial interface port. On the CNV rising edge, it samples an analog input IN+ between 0 V to REF with respect to a ground sense IN−. The reference voltage, REF, is applied externally and can be set independent of the supply voltage, VDD. Its power scales linearly with throughput.
The SPI-compatible serial interface also features the ability, using the SDI input, to daisy-chain several ADCs on a single, 3-wire bus and provides an optional busy indicator. It is compatible with 1.8 V, 2.5 V, 3 V, or 5 V logic, using the separate supply VIO.
The AD7980 is housed in a 10-lead MSOP or a 10-lead QFN (LFCSP) with operation specified from −40°C to +125°C.
The AD7980-EP supports defense and aerospace applications (AQEC)
Applications
- Battery-powered equipment
- Communications
- ATE
- Data acquisitions
- Medical instruments
The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for different microcontroller platforms.
Driver Description
The driver contains two parts:
- The driver for the AD7980 part, which may be used, without modifications, with any microcontroller.
- The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.
The Communication Driver has a standard interface, so the AD7980 driver can be used exactly as it is provided.
There are three functions which are called by the AD7980 driver:
- SPI_Init() – initializes the communication peripheral.
- SPI_Write() – writes data to the device.
- SPI_Read() – reads data from the device.
SPI driver architecture
The following functions are implemented in this version of AD7980 driver:
Function | Description |
---|---|
char AD7980_Init(void) | Initializes the communication peripheral. |
unsigned short AD7980_Conversion(void) | Initiates conversion and reads data. |
float AD7980_ConvertToVolts(unsigned short rawSample, float vRef) | Converts a 16-bit raw sample to volts. |
This version of AD7980 driver uses the CS Mode 4-Wire, without Busy Indicator mode; the device has to be connected to an SPI-compatible digital host as following:
- The AD7980 CNV signal (C2 on the oscilloscope) has to be connected to the SPI MOSI signal.
- The AD7980 SDI signal (C1 on the oscilloscope) has to be connected to the SPI CS signal (Chip Select has to be controlled manually).
- The AD7980 SCK signal (C4 on the oscilloscope) has to be connected to the SPI SCK signal.
- The AD7980 SDO signal (C3 on the oscilloscope) has to be connected to the SPI MISO signal.
Signals generated by the driver on the SPI port
HW Platform(s):
Downloads
- PIC32MX320F128H Common Drivers: https://github.com/analogdevicesinc/no-OS/tree/master/Microchip/PIC32MX320F128H/Common
Digilent Cerebot MX3cK Quick Start Guide
This section contains a description of the steps required to run the AD7980 demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
Required Software
- The AD7980 demonstration project for PIC32MX320F128H.
The AD7980 demonstration project for PIC32MX320F128H consists of three parts: the AD7980 Driver, the EVAL-AD7980-PMDZ Demo for PIC32MX320F128H and the PIC32MX320F128H Common Drivers.
All three parts have to be downloaded.
Hardware Setup
A has to be connected to the JE connector of Cerebot MX3cK development board.
- If you want to use AVDD > DVDD (= 3.3V) then JP3 on PmodAD4 must be removed. The range for AVDD is 3.0V ≤ AVDD ≤ 5.5V.
Reference Project Overview
The following commands were implemented in this version of AD7980 reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
voltage? | Initiates a conversion and displays the captured voltage. |
register? | Initiates a conversion and displays the data register in decimal format. |
Commands can be executed using a serial terminal connected to the UART1 peripheral of PIC32MX320F128H.
The following image shows a generic list of commands in a serial terminal connected to processor’s UART peripheral.
- The reference voltage for the AD7980 is 2.5V.
- If you want to use another reference voltage, you will need to modify the constant VREF value in ‘PmodAD4 Demo’. The range for VREF is 2.4V ≤ VREF ≤ 5.1V.
Software Project Setup
This section presents the steps for developing a software application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Run the MPLAB X integrated development environment.
- Choose to create a new project.
- In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.
- In the Select Device window choose PIC32MX320F128H device and press Next.
- In the Select Tool window select the desired hardware tool and press Next.
- In the Select Compiler window chose the XC32 compiler and press Next.
- In the Select Project Name and Folder window choose a name and a location for the project.
- After the project is created, all the downloaded source files have to be copied in the project folder and included in the project.
- The project is ready to be built and downloaded on the development board.
Digilent Cerebot MC7 Quick Start Guide
This section contains a description of the steps required to run the AD7980 demonstration project on a Digilent Cerebot MC7 platform.
Required Hardware
Required Software
Hardware Setup
A EVAL-AD7980-PMDZ has to be connected to the JB connector of Cerebot MC7 development board.
Reference Project Overview
Following commands were implemented in this version of AD7980 reference project for Cerebot MC7 board.
Command | Description |
---|---|
help? | Displays all available commands. |
voltage? | Initiates a conversion and displays the captured voltage. |
register? | Initiates a conversion and displays the data register in decimal format. |
Commands can be executed using a serial terminal connected to the UART1 peripheral of dsPIC33FJ128MC706A.
The following image shows a list of commands in a serial terminal connected to processor’s UART peripheral.
Software Project Setup
This section presents the steps for developing a software application that will run on the Digilent Cerebot MC7 development board for controlling and monitoring the operation of the ADI part.
- Run the MPLAB X integrated development environment.
- Choose to create a new project.
- In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.
- In the Select Device window choose dsPIC33FJ128MC706A device and press Next.
- In the Select Tool window select the desired hardware tool and press Next.
- In the Select Compiler window chose the XC16 compiler and press Next.
- In the Select Project Name and Folder window choose a name and a location for the project.
- After the project is created, the source files have to be copied in the project folder and included in the project.
- The project is ready to be built and downloaded on the development board.
Digilent Cerebot MX3cK Quick Start Guide - chipKIT Project
This section contains a description of the steps required to run the AD7980 chipKIT demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
Required Software
Hardware Setup
A EVAL-AD7980-PMDZ has to be connected to the JE connector of Cerebot MX3cK development board.
Reference Project Overview
Following commands were implemented in this version of AD7980 chipKIT reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
voltage? | Initiates a conversion and displays the captured voltage. |
register? | Initiates a conversion and displays the raw data in decimal format. |
Commands can be executed using the serial monitor.
Carriage return has to be selected as a line ending character. The required baud rate is 9600 baud.
The following image shows a list of commands in the serial monitor.
Software Project Setup
This section presents the steps for developing a chipKIT application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Under your Sketchbook directory create a folder called “Libraries”; this folder may already exist.
- Unzip the downloaded file in the libraries folder.
- Run the MPIDE environment.
- You should see the new library under Sketch→Import Library, under Contributed.
- Also you should see under File→Examples the demo project for the ADI library.
- Select the ADIDriver example.
- Select the Cerebot MX3cK board from Tools→Board.
- Select the corresponding Serial Communication Port from Tools→Serial Port
- The project is ready to be uploaded on the development board.
More information
- Example questions:
- An error occurred while fetching this feed: http://ez.analog.com/community/feeds/allcontent/atom?community=2077
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
- AD5933-适用于微芯片微控制器平台的无操作系统驱动程序
- AD5160-适用于瑞萨微控制器平台的无操作系统驱动程序
- AD5160-适用于微芯片微控制器平台的无操作系统驱动程序
- AD7193-适用于瑞萨微控制器平台的无操作系统驱动程序
- AD5628-适用于微芯片微控制器平台的无操作系统驱动程序
- AD5541A-适用于瑞萨微控制器平台的无操作系统驱动程序
- AD5933-瑞萨微控制器平台的无操作系统驱动程序
- AD7980-用于瑞萨微控制器平台的无操作系统驱动程序
- AD5781-适用于瑞萨微控制器平台的无操作系统驱动程序
- AD5781-适用于微芯片微控制器平台的无操作系统驱动程序
- AD74xx-适用于微芯片微控制器平台的无操作系统驱动程序
- AD799x-适用于微芯片微控制器平台的无操作系统驱动程序
- AD799x-用于瑞萨微控制器平台的无操作系统驱动程序
- AD5541A-适用于微芯片微控制器平台的无操作系统驱动程序
- AD7156-适用于瑞萨微控制器平台的无操作系统驱动程序
- HDRZ-A1变压器绕组变形测试仪PC通讯方法 118次阅读
- 实时时钟为微控制器系统增加了精确的计时功能 1382次阅读
- 了解和使用无操作系统和平台驱动程序 1295次阅读
- 基于具有USB功能的STM32微控制器 3826次阅读
- 微控制器的主要应用在哪里 9300次阅读
- 基于一种适用于模拟脉宽调制PWM可调光的LED驱动器NCL2801解析 5694次阅读
- 嵌入式Linux内核的驱动程序开发是怎样的 1524次阅读
- 适用于测控领域的4种实时操作系统对比分析 3703次阅读
- 浅谈电脑驱动程序的工作原理 详解电脑驱动程序意义 3w次阅读
- 基于嵌入式Linux内核的系统设备驱动程序开发设计 1209次阅读
- 基于Linux2.6.30开发DS18B20的驱动程序的类型和文件操作接口函数详解 1500次阅读
- 基于STM32的数字PDA系统软件系统设计 1562次阅读
- 8155驱动程序 3284次阅读
- 基于STM32ZET6控制器的数字PDA系统的设计 1577次阅读
- Silicon Labs 32 位微控制器的 10 大技术特点 1339次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1491次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 95次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 11次下载 | 免费
- 6100W短波放大电路图
- 0.05 MB | 4次下载 | 3 积分
- 7基于单片机和 SG3525的程控开关电源设计
- 0.23 MB | 4次下载 | 免费
- 8基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30320次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537793次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233046次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论