电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示
创作
电子发烧友网>电子资料下载>类型>参考设计>AD714X输入CapTouch®可编程控制器Linux驱动程序

AD714X输入CapTouch®可编程控制器Linux驱动程序

2021-05-13 | pdf | 463.71KB | 次下载 | 2积分

资料介绍

This version (03 Jan 2021 21:45) was approved by Robin Getz.The Previously approved version (11 Feb 2016 21:10) is available.Diff

AD714X Input CapTouch® Programmable Controller Linux Driver

Supported Devices

Evaluation Boards

Description

Capacitance Touch Sensors

Capacitance sensors detect a change in capacitance when something or someone approaches or touches the sensor. The technique has been used in industrial applications for many years to measure liquid levels, humidity, and material composition. A newer application, coming into widespread use, is in human-to-machine interfaces. Mechanical buttons, switches, and jog wheels have long been used as the interface between the user and the machine. Because of their many drawbacks, however, interface designers have been increasingly looking for more reliable solutions. Capacitive sensors can be used in the same manner as buttons, but they also can function with greater versatility, for example, when implementing a 128-position scroll bar.

For more info on how these types of sensors work, take a peek at the ADI web site.

Overview

Implementing a capacitive touch sensor solution using the AD714x requires three components:

  • the AD714x capacitive-to-digital converter IC,
  • sensors on a PCB or Flex Circuit,
  • software to communicate with the AD714x.

The sensor traces can be any number of different shapes and sizes. Buttons, wheels, scroll-bar, joypad, and touchpad shapes can be laid out as traces on the sensor PCB.

ad40-10_07a.jpg ad40-10_07b.jpg ad40-10_07c.jpg ad40-10_07d.jpg ad40-10_07e.jpg ad40-10_07f.jpg

Many options for implementing the user interface are available to the designer, ranging from simply replacing mechanical buttons with capacitive button sensors to eliminating buttons by using a joypad with eight output positions, or a scroll wheel that gives 128 output positions.

The number of sensors that can be implemented using a single device depends on the type of sensors required. The AD7142 has 14 capacitance input pins and 12 conversion channels, the AD7143 and AD7148 have 8 capacitance input pins and 8 conversion channels, and the AD7147 and AD7147A have 13 capacitance input pins and 12 conversion channels.

Configuration

Software configurable features

Source Code

Status

Source Mainlined?
git Yes

Files

In Linux, there are three driver modules for the AD714x: linux-2.6.x/drivers/input/misc/ad714x.c linux-2.6.x/drivers/input/misc/ad714x-spi.c linux-2.6.x/drivers/input/misc/ad714x-i2c.c.

ad714x.c fulfills the common arithmetic and state machines for sliders, keypads, touchpads and so on. ad714x-spi.c and ad714x-i2c.c, which call common probe/remove entries in ad714x.c, merge the bottom ad714x driver into Linux SPI/I2C device driver framework. The code included works with the AD7142 and AD7147 demo board. Note that this code is covered under the GPL - if you want non-GPL source, have a look at ADI's Web site.

Example platform device initialization

For compile time configuration, it’s common Linux practice to keep board- and application-specific configuration out of the main driver file, instead putting it into the board support file.

For devices on custom boards, as typical of embedded and SoC-(system-on-chip) based hardware, Linux uses platform_data to point to board-specific structures describing devices and how they are connected to the SoC. This can include available ports, chip variants, preferred modes, default initialization, additional pin roles, and so on. This shrinks the board-support packages (BSPs) and minimizes board and application specific #ifdefs in drivers.

21 Oct 2010 16:10

platform data, defines how the PCB info is implemented.

Declaring I2C devices

Unlike PCI or USB devices, I2C devices are not enumerated at the hardware level. Instead, the software must know which devices are connected on each I2C bus segment, and what address these devices are using. For this reason, the kernel code must instantiate I2C devices explicitly. There are different ways to achieve this, depending on the context and requirements. However the most common method is to declare the I2C devices by bus number.

This method is appropriate when the I2C bus is a system bus, as in many embedded systems, wherein each I2C bus has a number which is known in advance. It is thus possible to pre-declare the I2C devices that inhabit this bus. This is done with an array of struct i2c_board_info, which is registered by calling i2c_register_board_info().

So, to enable such a driver one need only edit the board support file by adding an appropriate entry to i2c_board_info.

For more information see: Documentation/i2c/instantiating-devices

21 Oct 2010 16:10

For AD7142 demo board, the platform information is:

Declaring SPI slave devices

Unlike PCI or USB devices, SPI devices are not enumerated at the hardware level. Instead, the software must know which devices are connected on each SPI bus segment, and what slave selects these devices are using. For this reason, the kernel code must instantiate SPI devices explicitly. The most common method is to declare the SPI devices by bus number.

This method is appropriate when the SPI bus is a system bus, as in many embedded systems, wherein each SPI bus has a number which is known in advance. It is thus possible to pre-declare the SPI devices that inhabit this bus. This is done with an array of struct spi_board_info, which is registered by calling spi_register_board_info().

For more information see: Documentation/spi/spi-summary

21 Oct 2010 16:10

For AD7147 demo board, the platform information is:

Adding Linux driver support

To select it from menuconfig:

Device Drivers  --->
  Input device support  --->
   [*]   Miscellaneous devices  --->
    <*>   Analog Devices AD714x Capacitance Touch Sensor
       <*>     support I2C bus connection
       <*>     support SPI bus connection

Hardware configuration

We connected the AD7142 demo board to the TWI/I2C connector and AD7147 demo board to the SPI connector on the BF537 STAMP board.

For BF537 STAMP board, please set SW5-3 off as the interrupt input.

And For AD7147 eval-board, please set S4-2 on and other positions off.

Driver testing

Some testing output from the event_test application:

root:~> modprobe ad7142.ko 
input: ad7142 joystick as /class/input/input0
ad7142_js_attach: at 0x58
root:~> event_test /dev/input/event0 
Input driver version is 1.0.0
Input device ID: bus 0x18 vendor 0x1 product 0x1 version 0x100
Input device name: "ad7142 joystick"
Supported events:
  Event type 0 (Reset)
    Event code 0 (Reset)
    Event code 1 (Key)
  Event type 1 (Key)
    Event code 103 (Up)
    Event code 105 (Left)
    Event code 106 (Right)
    Event code 108 (Down)
    Event code 294 (BaseBtn)
    Event code 295 (BaseBtn2)
    Event code 296 (BaseBtn3)
    Event code 297 (BaseBtn4)
Testing ... (interrupt to exit)
Event: time 398.520833, type 0 (Reset), code 0 (Reset), value 0
Event: time 400.734865, type 1 (Key), code 108 (Down), value 1
Event: time 400.734874, type 0 (Reset), code 0 (Reset), value 0
Event: time 400.853353, type 1 (Key), code 108 (Down), value 0
Event: time 400.853360, type 0 (Reset), code 0 (Reset), value 0
Event: time 400.930182, type 1 (Key), code 103 (Up), value 1
Event: time 400.931390, type 0 (Reset), code 0 (Reset), value 0
Event: time 401.046258, type 1 (Key), code 103 (Up), value 0
Event: time 401.047461, type 0 (Reset), code 0 (Reset), value 0
Event: time 402.361193, type 1 (Key), code 294 (BaseBtn), value 1
Event: time 402.362403, type 0 (Reset), code 0 (Reset), value 0
Event: time 402.555558, type 1 (Key), code 294 (BaseBtn), value 0
Event: time 402.556760, type 0 (Reset), code 0 (Reset), value 0
Event: time 402.942508, type 1 (Key), code 295 (BaseBtn2), value 1
Event: time 402.942516, type 0 (Reset), code 0 (Reset), value 0

More Information

下载该资料的人也在下载 下载该资料的人还在阅读
更多 >

评论

查看更多

下载排行

本周

  1. 1电子电路原理第七版PDF电子教材免费下载
  2. 0.00 MB  |  1491次下载  |  免费
  3. 2单片机典型实例介绍
  4. 18.19 MB  |  95次下载  |  1 积分
  5. 3S7-200PLC编程实例详细资料
  6. 1.17 MB  |  27次下载  |  1 积分
  7. 4笔记本电脑主板的元件识别和讲解说明
  8. 4.28 MB  |  18次下载  |  4 积分
  9. 5开关电源原理及各功能电路详解
  10. 0.38 MB  |  11次下载  |  免费
  11. 6100W短波放大电路图
  12. 0.05 MB  |  4次下载  |  3 积分
  13. 7基于单片机和 SG3525的程控开关电源设计
  14. 0.23 MB  |  4次下载  |  免费
  15. 8基于AT89C2051/4051单片机编程器的实验
  16. 0.11 MB  |  4次下载  |  免费

本月

  1. 1OrCAD10.5下载OrCAD10.5中文版软件
  2. 0.00 MB  |  234313次下载  |  免费
  3. 2PADS 9.0 2009最新版 -下载
  4. 0.00 MB  |  66304次下载  |  免费
  5. 3protel99下载protel99软件下载(中文版)
  6. 0.00 MB  |  51209次下载  |  免费
  7. 4LabView 8.0 专业版下载 (3CD完整版)
  8. 0.00 MB  |  51043次下载  |  免费
  9. 5555集成电路应用800例(新编版)
  10. 0.00 MB  |  33562次下载  |  免费
  11. 6接口电路图大全
  12. 未知  |  30320次下载  |  免费
  13. 7Multisim 10下载Multisim 10 中文版
  14. 0.00 MB  |  28588次下载  |  免费
  15. 8开关电源设计实例指南
  16. 未知  |  21539次下载  |  免费

总榜

  1. 1matlab软件下载入口
  2. 未知  |  935053次下载  |  免费
  3. 2protel99se软件下载(可英文版转中文版)
  4. 78.1 MB  |  537793次下载  |  免费
  5. 3MATLAB 7.1 下载 (含软件介绍)
  6. 未知  |  420026次下载  |  免费
  7. 4OrCAD10.5下载OrCAD10.5中文版软件
  8. 0.00 MB  |  234313次下载  |  免费
  9. 5Altium DXP2002下载入口
  10. 未知  |  233046次下载  |  免费
  11. 6电路仿真软件multisim 10.0免费下载
  12. 340992  |  191183次下载  |  免费
  13. 7十天学会AVR单片机与C语言视频教程 下载
  14. 158M  |  183277次下载  |  免费
  15. 8proe5.0野火版下载(中文版免费下载)
  16. 未知  |  138039次下载  |  免费