资料介绍
Table of Contents
ADXL345 - No-OS Driver for Microchip Microcontroller Platforms
Supported Devices
Evaluation Boards
Reference Circuits
Overview
The ADXL345 is a small, thin, low power, 3-axis accelerometer with high resolution (13-bit) measurement at up to ±16 g. Digital output data is formatted as 16-bit twos complement and is accessible through either a SPI (3- or 4-wire) or I2C digital interface.
The ADXL345 is well suited for mobile device applications. It measures the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion or shock. Its high resolution (4 mg/LSB) enables measurement of inclination changes less than 1.0°.
Several special sensing functions are provided. Activity and inactivity sensing detect the presence or lack of motion and if the acceleration on any axis exceeds a user-set level. Tap sensing detects single and double taps. Free-fall sensing detects if the device is falling. These functions can be mapped to one of two interrupt output pins. An integrated, patent pending 32-level first in, first out (FIFO) buffer can be used to store data to minimize host processor intervention.
Low power modes enable intelligent motion-based power management with threshold sensing and active acceleration measurement at extremely low power dissipation.
The ADXL345 is supplied in a small, thin, 3 mm × 5 mm × 1 mm, 14-lead, plastic package.
Applications
- ADXL345-EP Supports defense and aerospace applications (AQEC)
The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for different microcontroller platforms.
Driver Description
The driver contains two parts:
- The driver for the ADXL345 part, which may be used, without modifications, with any microcontroller.
- The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.
The Communication Driver has a standard interface, so the ADXL345 driver can be used exactly as it is provided.
If the SPI communication is chosen, there are three functions which are called by the ADXL345 driver:
- SPI_Init() – initializes the communication peripheral.
- SPI_Write() – writes data to the device.
- SPI_Read() – reads data from the device.
SPI driver architecture
If the I2C communication is chosen, there are three functions which are called by the ADXL345 driver:
- I2C_Init() – initializes the communication peripheral.
- I2C_Write() – writes data to the device.
- I2C_Read() – reads data from the device.
I2C driver architecture
The implementation of these three functions depends on the used microcontroller.
The following functions are implemented in this version of ADXL345 driver:
Function | Description |
---|---|
char ADXL345_Init(char commProtocol) | Initializes the communication peripheral and checks if the ADXL345 part is present. |
void ADXL345_SetRegisterValue(unsigned char registerAddress, unsigned char registerValue) | Writes data into a register. |
unsigned char ADXL345_GetRegisterValue(unsigned char registerAddress) | Reads the value of a register. |
void ADXL345_SetPowerMode(unsigned char pwrMode) | Places the device into standby/measure mode. |
void ADXL345_GetXyz(short* x, short* y, short* z) | Reads the raw output data of each axis. |
void ADXL345_GetGxyz(float* x, float* y, float* z) | Reads the raw output data of each axis and converts it to g. |
void ADXL345_SetTapDetection(unsigned char tapType, unsigned char tapAxes, unsigned char tapDur, unsigned char tapLatent, unsigned char tapWindow, unsigned char tapThresh, unsigned char tapInt) | Enables/disables the tap detection. |
void ADXL345_SetActivityDetection(unsigned char actOnOff, unsigned char actAxes, unsigned char actAcDc, unsigned char actThresh, unsigned char actInt) | Enables/disables the activity detection. |
void ADXL345_SetInactivityDetection(unsigned char inactOnOff, unsigned char inactAxes, unsigned char inactAcDc, unsigned char inactThresh, unsigned char inactTime, unsigned char inactInt) | Enables/disables the inactivity detection. |
void ADXL345_SetFreeFallDetection(unsigned char ffOnOff, unsigned char ffThresh, unsigned char ffTime, unsigned char ffInt) | Enables/disables the free-fall detection. |
void ADXL345_SetOffset(unsigned char xOffset, unsigned char yOffset, unsigned char zOffset) | Calibrates the accelerometer. |
void ADXL345_SetRangeResolution(unsigned char gRange, unsigned char fullRes) | Selects the measurement range. |
HW Platform(s):
Downloads
- PmodACL Demo for PIC32MX320F128H: https://github.com/analogdevicesinc/no-OS/tree/master/Microchip/PIC32MX320F128H/PmodACL
- PIC32MX320F128H Common Drivers: https://github.com/analogdevicesinc/no-OS/tree/master/Microchip/PIC32MX320F128H/Common
Digilent Cerebot MX3cK Quick Start Guide
This section contains a description of the steps required to run the ADXL345 demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
Required Software
- The ADXL345 demonstration project for PIC32MX320F128H.
The ADXL345 demonstration project for PIC32MX320F128H consists of three parts: the ADXL345 Driver, the PmodACL Demo for PIC32MX320F128H and the PIC32MX320F128H Common Drivers.
All three parts have to be downloaded.
Hardware Setup
A PmodACL can be connected to the J2 connector of Cerebot MX3cK development board for I2C operation,
or to the JE connector of Cerebot MX3cK development board for SPI operation.
Reference Project Overview
The following commands were implemented in this version of ADXL345 reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
communication= | Selects the communication interface. Accepted values: 0 - SPI. 1 - I2C. |
communication? | Displays the selected communication interface. |
acceleration? | Displays the accelerations on XYZ axes. |
accelerationX? | Displays the acceleration on X axis. |
accelerationY? | Displays the acceleration on Y axis. |
accelerationZ? | Displays the acceleration on Z axis. |
interrupts? | Displays the state of the interrupts. |
Commands can be executed using a serial terminal connected to the UART1 peripheral of PIC32MX320F128H.
The following image shows a generic list of commands in a serial terminal connected to processor’s UART peripheral.
Software Project Setup
This section presents the steps for developing a software application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Run the MPLAB X integrated development environment.
- Choose to create a new project.
- In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.
- In the Select Device window choose PIC32MX320F128H device and press Next.
- In the Select Tool window select the desired hardware tool and press Next.
- In the Select Compiler window chose the XC32 compiler and press Next.
- In the Select Project Name and Folder window choose a name and a location for the project.
- After the project is created, all the downloaded source files have to be copied in the project folder and included in the project.
- The project is ready to be built and downloaded on the development board.
Digilent Cerebot MC7 Quick Start Guide
This section contains a description of the steps required to run the ADXL345 demonstration project on a Digilent Cerebot MC7 platform.
Required Hardware
Required Software
Hardware Setup
A PmodACL can be connected to the J6 connector of Cerebot MC7 development board for I2C operation,
or to the JB connector of Cerebot MC7 development board for SPI operation.
Reference Project Overview
Following commands were implemented in this version of ADXL345 reference project for Cerebot MC7 board.
Command | Description |
---|---|
help? | Displays all available commands. |
communication= | Selects the communication interface. Accepted values: 0(I2C),1(SPI). |
communication? | Displays the selected communication interface. |
acceleration? | Displays the acceleration on XYZ axis. |
interrupts? | Displays the state of the interrupts. |
Commands can be executed using a serial terminal connected to the UART1 peripheral of dsPIC33FJ128MC706A.
The following image shows a list of commands in a serial terminal connected to processor’s UART peripheral.
Software Project Setup
This section presents the steps for developing a software application that will run on the Digilent Cerebot MC7 development board for controlling and monitoring the operation of the ADI part.
- Run the MPLAB X integrated development environment.
- Choose to create a new project.
- In the Choose Project window select Microchip Embedded category, Standalone Project and press Next.
- In the Select Device window choose dsPIC33FJ128MC706A device and press Next.
- In the Select Tool window select the desired hardware tool and press Next.
- In the Select Compiler window chose the XC16 compiler and press Next.
- In the Select Project Name and Folder window choose a name and a location for the project.
- After the project is created, the source files have to be copied in the project folder and included in the project.
- The project is ready to be built and downloaded on the development board.
Digilent Cerebot MX3cK Quick Start Guide - chipKIT Project
This section contains a description of the steps required to run the ADXL345 chipKIT demonstration project on a Digilent Cerebot MX3cK platform.
Required Hardware
- PmodACL
Required Software
Hardware Setup
A PmodACL can be connected to the J2 connector of Cerebot MX3cK development board for I2C operation,
or to the JE connector of Cerebot MX3cK development board for SPI operation.
Reference Project Overview
Following commands were implemented in this version of ADXL345 reference project for Cerebot MX3cK board.
Command | Description |
---|---|
help? | Displays all available commands. |
communication= | Selects the communication interface. Accepted values: 0(I2C),1(SPI). |
communication? | Displays the selected communication interface. |
acceleration? | Displays the acceleration on XYZ axis. |
interrupts? | Displays the state of the interrupts. |
Commands can be executed using the serial monitor.
Carriage return has to be selected as a line ending character. The required baud rate is 9600 baud.
The following image shows a list of commands in the serial monitor.
Software Project Setup
This section presents the steps for developing a chipKIT application that will run on the Digilent Cerebot MX3cK development board for controlling and monitoring the operation of the ADI part.
- Under your Sketchbook directory create a folder called “Libraries”; this folder may already exist.
- Unzip the downloaded file in the libraries folder.
- Run the MPIDE environment.
- You should see the new library under Sketch→Import Library, under Contributed.
- Also you should see under File→Examples the demo project for the ADI library.
- Select the ADIDriver example.
- Select the Cerebot MX3cK board from Tools→Board.
- Select the corresponding Serial Communication Port from Tools→Serial Port
- The project is ready to be uploaded on the development board.
More information
- Example questions:
- An error occurred while fetching this feed: http://ez.analog.com/community/feeds/allcontent/atom?community=2077
- AD5160-适用于瑞萨微控制器平台的无操作系统驱动程序
- AD7156-适用于单片机平台的无操作系统驱动程序
- AD5160-适用于微芯片微控制器平台的无操作系统驱动程序
- AD5628-适用于微芯片微控制器平台的无操作系统驱动程序
- AD7303-适用于单片机平台的无操作系统驱动程序
- AD7091R-适用于单片机平台的无操作系统驱动程序
- AD5541A-适用于瑞萨微控制器平台的无操作系统驱动程序
- AD7193-适用于单片机平台的无操作系统驱动程序
- AD7780-适用于单片机平台的无操作系统驱动程序
- ADXL345-用于瑞萨微控制器平台的无操作系统驱动程序
- AD5781-适用于瑞萨微控制器平台的无操作系统驱动程序
- ADT7420-适用于单片机平台的无操作系统驱动程序
- ADXL362-适用于单片机平台的无操作系统驱动程序
- ADP5589-适用于单片机平台的无操作系统驱动程序
- ADXRS453-适用于单片机平台的无操作系统驱动程序
- 国产RT-thread操作系统在国民技术单片机上移植 395次阅读
- 基于ADXL345加速度传感器的倾角测量系统设计 2480次阅读
- 了解和使用无操作系统和平台驱动程序 1066次阅读
- ADXL345三轴数字加速度计的驱动设计与实现 7550次阅读
- 51单片机操作系统开发中有什么技巧会碰到什么问题 2898次阅读
- 单片机多任务处理方案 9318次阅读
- 单片机和嵌入式系统linux的区别 6890次阅读
- 适用于测控领域的4种实时操作系统对比分析 3531次阅读
- 浅谈电脑驱动程序的工作原理 详解电脑驱动程序意义 2.9w次阅读
- 基于嵌入式Linux内核的系统设备驱动程序开发设计 1113次阅读
- 单片机与嵌入式系统有什么区别和联系? 1.4w次阅读
- 一文看懂单片机与PLC程序设计的区别 7334次阅读
- 51单片机DS1302实时时钟驱动程序 9256次阅读
- 基于K9F5608A的MCS-51单片机驱动程序 1966次阅读
- 基于ADC081S051与51单片机的接口电路及驱动程序 4378次阅读
下载排行
本周
- 1电子电路原理第七版PDF电子教材免费下载
- 0.00 MB | 1491次下载 | 免费
- 2单片机典型实例介绍
- 18.19 MB | 95次下载 | 1 积分
- 3S7-200PLC编程实例详细资料
- 1.17 MB | 27次下载 | 1 积分
- 4笔记本电脑主板的元件识别和讲解说明
- 4.28 MB | 18次下载 | 4 积分
- 5开关电源原理及各功能电路详解
- 0.38 MB | 11次下载 | 免费
- 6100W短波放大电路图
- 0.05 MB | 4次下载 | 3 积分
- 7基于单片机和 SG3525的程控开关电源设计
- 0.23 MB | 4次下载 | 免费
- 8基于AT89C2051/4051单片机编程器的实验
- 0.11 MB | 4次下载 | 免费
本月
- 1OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 2PADS 9.0 2009最新版 -下载
- 0.00 MB | 66304次下载 | 免费
- 3protel99下载protel99软件下载(中文版)
- 0.00 MB | 51209次下载 | 免费
- 4LabView 8.0 专业版下载 (3CD完整版)
- 0.00 MB | 51043次下载 | 免费
- 5555集成电路应用800例(新编版)
- 0.00 MB | 33562次下载 | 免费
- 6接口电路图大全
- 未知 | 30320次下载 | 免费
- 7Multisim 10下载Multisim 10 中文版
- 0.00 MB | 28588次下载 | 免费
- 8开关电源设计实例指南
- 未知 | 21539次下载 | 免费
总榜
- 1matlab软件下载入口
- 未知 | 935053次下载 | 免费
- 2protel99se软件下载(可英文版转中文版)
- 78.1 MB | 537793次下载 | 免费
- 3MATLAB 7.1 下载 (含软件介绍)
- 未知 | 420026次下载 | 免费
- 4OrCAD10.5下载OrCAD10.5中文版软件
- 0.00 MB | 234313次下载 | 免费
- 5Altium DXP2002下载入口
- 未知 | 233046次下载 | 免费
- 6电路仿真软件multisim 10.0免费下载
- 340992 | 191183次下载 | 免费
- 7十天学会AVR单片机与C语言视频教程 下载
- 158M | 183277次下载 | 免费
- 8proe5.0野火版下载(中文版免费下载)
- 未知 | 138039次下载 | 免费
评论
查看更多