完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 反馈电路
反馈电路是将放大器输出信号(电压或电流)的一部分或全部,回收到放大器输入端与输入信号进行比较(相加或相减),并用比较所得的有效输入信号去控制输出,这就是放大器的反馈过程。
反馈电路是将放大器输出信号(电压或电流)的一部分或全部,回收到放大器输入端与输入信号进行比较(相加或相减),并用比较所得的有效输入信号去控制输出,这就是放大器的反馈过程。
放大电路
基本放大电路中,有源器件(晶体管等)具有信号单向传递性,被放大信号从输入端输入放大电路以后输出,存在输入信号对输出信号的单向控制;如果在电路中存在某些通路,将输出信号的一部分反馈送到放大器的输入端,与外部输入信号叠加,产生基本放大电路的净输入信号,实现输出信号对输入的控制,即构成了反馈。
反馈电路是将放大器输出信号(电压或电流)的一部分或全部,回收到放大器输入端与输入信号进行比较(相加或相减),并用比较所得的有效输入信号去控制输出,这就是放大器的反馈过程。
放大电路
基本放大电路中,有源器件(晶体管等)具有信号单向传递性,被放大信号从输入端输入放大电路以后输出,存在输入信号对输出信号的单向控制;如果在电路中存在某些通路,将输出信号的一部分反馈送到放大器的输入端,与外部输入信号叠加,产生基本放大电路的净输入信号,实现输出信号对输入的控制,即构成了反馈。
概述TP2200VER/S-400前馈加回馈变频器反馈可分为负反馈和正反馈。前者使输出起到与输入相反的作用,使系统输出与系统目标的误差减小,系统趋于稳定;后者使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。对负反馈的研究是控制论的核心问题。在放大电路中既有直流分量,又有交流分量,所以必然有直流反馈和交流反馈之分。直流反馈影响放大电路的直流性能,如静态工作点。交流反馈影响放大电路的交流性能,如增益、输入电阻、输出电阻和带宽等。负反馈放大电路分为四种组态:电压串联负反馈、电压并联负反馈、电流串联负反馈、电流并联负反馈。具体应用要根据具体情况选择[3]。传播学上的反馈:指传播过程中受传者对收到的信息所作的反应,获得反馈讯息是传播者的意图和目的,发出反馈是受传者能动性的体现。
判别反馈一、反馈放大器反馈极性的经验分析法—符号法图1分析步骤1.在输入端上加上一个“+”或“-”的输入信号,按瞬时极性法标出反馈放大器中各个电极(基极b,集电极c,发射极e)电压的瞬时性。2.判断经放大和反馈后得到的反馈信号Xf的瞬时极性。3.反馈信号Xf,加到信号输入端时,极性与输入信号Xi相反时,则为负反馈;反之则为正反馈。反馈信号Xf,加到信号输出端时,极性与输入信号Xi相同则为负反馈;反之则为正反馈。如图1,利用符号法可判断反馈回来的信号加在基极b上,且与原输入信号异号,则为负反馈。[4]二、反馈放大器反馈类型的经验分析法图2按反馈信号的输出取样方式和输入连接的比较方式,反馈可以组成四种反馈组态:a电压串联反馈;b电压并联反馈;c电流串联反馈;d电流并联反馈。1.判断是电压反馈还是电流反馈的经验法a)负载短路法:使放大电路的输出端交流短路。若反馈信号Xf消失,则说明反馈信号取样于输出电压,则为电压反馈(Xf=FV0)。若反馈信号仍然存在,则说明反馈信号取样于输出电流,则为电流反馈(Xf=FI0)。b)一般规律法:反馈量取自于信号输出端的电压信号,为电压反馈;反馈信号取自于信号输出端的电流信号,为电流反馈。具体来说,将负载电阻与反馈网络看作双端网络(在反馈放大电路中其中一端通常为公共接地端),若负载电阻与反馈网络并联,则反馈量对输出电压采样,为电压反馈。否则,反馈量无法直接对输出电压进行采样,则只能对输出电流进行采样,即为电流反馈。如图1所示:输出电压在发射极e上,反馈信号取在发射极e上,即反馈量取自于信号输出端,则为电压反馈。如图2所示,反馈信号取自于非信号输出端,则为电流反馈。2.判断是并联反馈还是串联反馈的经验法a)输入短路法:将输入端交流短路,若反馈量作用不到放大电路输入端,则为并联反馈;若反馈量仍能作用到放大电路输入端,则为串联反馈。b)一般规律法:反馈量加到非信号输人端的是串联反馈;反馈量加到信号输入端则为并联反馈。如图1反馈信号加到信号输入端则为并联反馈。如图2反馈信号加到了非信号输入端则为串联反馈。
解释
反馈电路在各种电子电路中都获得普遍的应用,反馈是将放大器输出信号(电压或电流)的一部分或全部,回收到放大器输入端与输入信号进行比较(相加或相减),并用比较所得的有效输入信号去控制输出,这就是放大器的反馈过程。凡是回收到放大器输入端的反馈信号起加强原输入信号的,使输入信号增加的称正反馈,反之则为负反馈。
分类
按其电路结构又分为:电流反馈电路和电压反馈电路。正反馈电路多应用在电子振荡电路上,而负反馈电路则多应用在各种高低频放大电路上。按电路特性可分为:串联反馈和并联反馈。因应用较广,负反馈对放大器性能有五种影响:1.负反馈能提高放大器增益的稳定性。2.负反馈能使放大器的通频带展宽。3.负反馈能减少放大器的失真。4.负反馈能提高放大器的信噪比。5.负反馈对放大器的输出输入电阻有影响。
反馈放大电路
含有反馈网络的放大电路称为反馈放大电路,反馈放大电路主要由基本放大电路和反馈电路两部分组成。反馈可分为负反馈和正反馈。
负反馈放大器电路详解
负反馈放大器
在放大器中采用负反馈电路,其目的是为了改善放大器的工作性能,提高放大器的输出信号质量。在引入负反馈电路之后,放大器的增益 要比没有负反馈时的增益小,但是可以改善放大器的许多性能,主要有四项:减小放大器的非线性失真、扩宽放大器的频带、降低放大器的噪声和稳定放大器的工作状态。
正反馈和负反馈概念
放大器的信号传输都是从放大器的输入端传输到放大器输出端,但是反馈过程则不同,它是从放大器输出端取出一部分输出信号作为反馈信号,再加到放大器的输入端,与原放大器输入信号进行混合,这一过程称为反馈。
1.反馈方框图
如图4-1所示是反馈方框图。从图中可以看出,输入信号Ui从输入端加到放大器中进行放大,放大后的输出信号Uo其中的一部分加到下一级放大器中,另有一部分信号经过反馈电路作为反馈信号UF,与输入信号Ui合并,作为净输入信号VI加到放大器中。
图1 反馈方框图
2.反馈种类
反馈电路有两种:正反馈电路和负反馈电路。这两种反馈的结果(指对输出信号的影响)完全相反。
3.正反馈概念
正反馈可以举一个例子来说明,吃某种食品,由于它很可可,所以在吃了之后更想吃,这是正反过程。
如图4-2所示正反馈方框图,当反馈信号UF与输入信号Ui是同相位时,这两个信号混合后是相加的关系,所以净输入放大器的信号UI比输入信号Ui更大,而放大器的放大倍数没有变化,这样放大器的输出信号Uo比不加入反馈电路时的大,这种反馈称为正反馈。
图2 正反馈方框图
在加入正反馈之后的放大器,输出信号愈反馈愈大(当然不会无限制地增大,这一点在后面的振荡器电路中介绍),这是正反馈的特点。正反馈电路在放大器电路中通常不用,它只是用于振荡器中。
4.负反馈概念
负反馈也可以举一例说明,一盆开水,当手指不小心接触到热水时,手指很快缩回,而不是继续向里面伸,手指的回缩过程就是负反馈过程。
如图4-3所示是负反馈方框图,当反馈信号UF相位和输入信号Ui的相位相反时,它们混合的结果是相减,结果净输入放大器的信号UI比输入信号Ui要小,使放大器的输出信号Uo减小,引起放大器电路这种反馈过程的电路称为负反馈电路。
图3 负反馈方框图
5.反馈量
负反馈的结果使净输入放大器的信号变小,放大器的输出信号减小,这等效成放大器的增益在加入负反馈电路之后减小了。当负反馈电路造成的净输入信号愈小,即负反馈量愈大,负反馈放大器的增益愈小,反之负反馈量愈小,负反馈放大器的增益愈大。
正反馈也有同样的正反馈量问题。
全面了解负反馈电路种类
1.负反馈种类
四种负反馈电路
负反馈电路接在放大器的输出端和输入端之间,根据负反馈放大器输入端和输出端的不同组合形式,负反馈放大器共有下列四种电路:
(1)电压并联负反馈放大器电路。
(2)电压串联负反馈放大器电路。
(3)电流并联负反馈放大器电路。
(4)电流串联负反馈放大器电路。
负反馈电路分析方法
负反馈电路是初学者比较难学的电路之一,如果掌握了基本的电路分析方法和四种典型的负反馈电路工作原理,那学习将比较轻松。
1.瞬时信号极性分析法
对于负反馈电路工作原理的分析有特定的方法,即采用信号电压瞬时极性分析法。如图4-4所示是一种负反馈电路,以该电路为例介绍这种电路分析方法中。
图4 瞬时信号极性分析法示意图
2.电路分析说明
在采用瞬时信号极性分析法分析负反馈电路时,要注意以下几点。
3.负反馈信号种类分析说明
在进行负反馈电路分析时,要分析出参加负反馈的信号种类,如是直流信号还是交流信号,对交流信号而言是低频还是高频信号,还是某一特定频率的信号。
分析参加负反馈的信号种类时,主要是看负反馈电路特性和整个负反馈回路的特性,有这些回路特性决定了负反馈的种类,主要有下列几种情况。
四种典型负反馈放大器
典型负反馈放大器的共有四种,其他负反馈放大器的电路会有一些变化,但都从本质上离不开这四种典型电路,所以必须掌握这四种负反馈放大器工作原理。
电压并联负反馈放大器
如图4-5所示是一级共发射极放大器,它也构成了电压并联负反馈放大器。电路中,VT1是放大管,R1是集电极-基极负反馈偏置电阻 ,R2是集电极负载电阻,Ui是输入信号,UO是输出信号。由于这是一级共发射极放大器,所以VT1管集电极输出信号电压的相位与基极上输入信号电压相位相反。
图 电压并联负反馈放大器
1.负反馈元件确定方法
根据接在放大器输出端与输入端之间的元器件可能是负反馈元器件这一判断方法,从电路中可以看出,接在输入端VT1管基极和输出端VT1管集电极之间的元件有R1和C2两个,所以这两个元件有可能构成负反馈电路。其他元器件都不是接在放大器的输入端和输出端之间,没有构成负反馈电路的可能,这样分析负反馈电路时重点是R1和C2。
2.负反馈电阻R1分析
前面在基极偏置电路中已经介绍,R1是VT1管的集电极-基极负反馈式偏置电阻。这里根据负反馈电路的分析方法来说明接入这一电阻R1后的电路负反馈过程。
关于这一负反馈电路还要说明以下几点。
3.高频负反馈电容C2分析
从电路中可以看出,在负反馈电阻R1上还并联了一只容量很小的电容C2 ,对C2的负反馈过程分析同电阻R1的分析过程是一样的,但电容器和电阻器的特性不同,所以这一电容的负反馈原理有所不同,主要说明以下几点。
4.电压负反馈判别方法
电路中R1和C2构成的是电压负反馈电路,因为这两个元将放大器输出的信号电压反馈到放大器的输入端,所以称为电压负反馈电路。
5.并联负反馈判别方法
见图4-5所示是并联负反馈电路,由R1送过来的负反馈信号是与输入信号Ui在基极并联后加到三极管基极的,所以这是并联负反馈电路。
根据电压负反馈和并联负反馈的判别方法可知,如图4-5所示电路中的R1和C2构成电压并联负反馈电路。
4.2.2 电流串联负反馈放大器
如图4-8所示是一级共发射极放大器,R3构成电流串联负反馈电路。
图4-8 电流串联负反馈电路
R3是VT1发射极负反馈电阻,R3接在发射极回路中,而发射极是这一放大器输入、输出回路共用端,所以R3是接在放大器的输入端和输出端之间的,它有可能构成负反馈电路。
1.负反馈电路分析
VT1发射极电流流过电阻R3后,在R3上产生电压降,这一信号电压降就是反馈信号电压。
电阻R3上负反馈信号电压与输入信号相串联,所以这是串联负反馈电路。
【负反馈量提示】:
这种负反馈电路中,如果VT1发射极电流大小不变,负反馈电阻R3愈大,在R3上的负反馈信号电压愈大,使VT1基极电流减小量愈大,即负反馈量愈大,放大器的增益愈小,反之则相反。电路中,由于直流和交流电流都流过了负反馈电阻R3,所以R3对直流和交流都存在负反馈作用。
2.接有旁路电容的发射极负反馈电阻电路
三极管发射极电阻构成的是电流串联负反馈电路,这一电路根据是否接有发射极旁路电容和该电容容量大小不同,有多种变形电路。
R1是发射极负反馈电阻,没有接入C1时VT1发射极流出的直流电流和交流信号电流都流过R1到地,R1对直流和交流都存在负反馈作用。加入C1后R1只存在直流负反馈作用,因为交流信号电流没有流过R1,所以R1对交流信号不存在负反馈作用。
从图中可以看出,C1的容量为47F,对于音频放大器而言,该电容容量很大了,它对所有频率音频信号呈现很小的容抗,所以它能让所有频率的音频信号通过。
判断发射极电阻存在什么样信号负反馈的方法是:
什么样的电流流过发射极电阻,就存在什么样信号电压,便存在什么样的负反馈,所以只要分析是什么样的电流流过了发射极电阻即可。
3.部分发射极电阻加旁路电容电路
采用这种发射极电阻设计的目的是获得更大的直流负反馈同时减小交流负反馈,因为交流负反馈量太大后,会使放大器的增益下降得太多。
【分析提示】:
对于这种多个发射极电阻串联电路,分析哪只电阻是直流还是交流负反馈关键是看流过该电阻的电流是什么,如果只是直流电流流过该电阻,就是只有直流负反馈。如果除直流电流外还有交流电流流过该电阻,则该电阻存在交流和直流的双重负反馈。
4.接有高频旁路电容的发射极负反馈电阻电路
如果VT1管构成的是高频放大器(电路中的输入端耦合电容容量减小几百皮法),高频放大器的工作频率远高于音频信号频率,由于信号的频率本身高,C2容量虽然只有1F,但是容抗已经很小,远小于发射极负反馈电阻R2,所有的高频信号通过C2流到地线。加入了C2之后,R2没有高频信号负反馈作用,只存在直流负反馈。
【分析提示】:
通过这一电路的分析可知,在进行电路分析时有时不仅要了解是什么类型放大器,了解电路中元器件的特性,有时还需要了解元器件标称值的大小,否则电路分析不准确,例如电路中同是1F的电容C2,在不同工作频率的放大器中所起的具体作用不同。对音频信号而言,C2只对音频信号中的高频信号进行旁路;对于高频放大器而言,则对所有的高频信号旁路。
5.接有不同容量旁路电容的发射极电阻电路
6.判断电流负反馈电路方法
电流负反馈电路判断方法是这样:如图4-13所示,如果将放大器的输出端对地交流短接后,放大器中负反馈仍然存在,那么是电流负反馈电路,否则就不是电流负反馈电路。
图4-13 电流负反馈电路判断方法示意图
7.串联负反馈电路判断方法
RC桥式正弦波振荡电路是一种常见的电子振荡电路,它利用电阻(R)和电容(C)元件构成的网络来产生稳定的正弦波输出。这种电路广泛应用于信号发生器、通信设备...
负阻抗变换器是一种电子电路元件,它能够将一个电阻性负载的阻抗转换为一个负阻抗。这种变换器在许多电子电路中都有应用,比如放大器、振荡器、滤波器等。 负阻抗...
运放(Operational Amplifier,简称Op-Amp)是一种具有高增益、高输入阻抗和低输出阻抗的放大器,广泛应用于模拟电路中。在比较器应用...
定压功放和定阻功放是电子设备中两种常见的功放(放大器)类型。它们在功放的工作原理、特性、适用场景等方面存在一些差异。 首先,定压功放是一种输出电压基本固...
BUCK电路是一种常用的降压转换电路,它的作用是将输入电压转换成较低的输出电压。BUCK电路主要由开关管、电感和滤波电容组成,并且还配备有控制器、反馈电...
JW5079A是一款电压输出模块。在本文中,我们将讨论JW5079A的输出电压公式,并对其背后的原理进行详细解析。 为了理解JW5079A的输出电压公式...
GTO与普通晶闸管相比为什么可以自关断?为什么普通晶闸管不能呢?
GTO与普通晶闸管相比为什么可以自关断?为什么GTO可以关断普通晶闸管而不能呢? GTO晶闸管相比普通晶闸管具有自关断功能。这个功能的实现是通过改进GT...
同相比例运算放大器,在反馈电阻上并一个电容的作用是什么? 同相比例运算放大器是一种常用的电子放大器,用于放大输入信号。在反馈电阻上并一个电容是为了改善放...
什么是限幅电路?限幅电路的作用 限幅电路是一种电子电路,它用于限制输入信号的振幅范围,以确保输出信号始终保持在某个设定范围之内。限幅电路通常由一个比较...
如何改善原边反馈反激架构的输出电压调整率? 原边反馈反激架构是一种常用于开关电源的控制方式,它具有高效率、精准的输出电压调节等优点。然而,由于其固有的响...
充电器反馈电路为什么用运放而不用比较器? 充电器反馈电路是用于控制充电器输出电压稳定在设定的值上的一种电路。常见的充电器反馈电路通常采用运放而不是比较器...
为什么反馈电阻并联一个小电容可以提升稳定性? 反馈电阻并联小电容可以提升电路的稳定性,是因为反馈电阻和小电容的联合起到了阻尼的作用。在反馈电路中,将输出...
反馈电路中的相位补偿到底是什么? 反馈电路是指将电路的一部分输出信号再次输入到电路中的技术。这种技术可以改变原本电路的性质,使其更加稳定、准确,同时也可...
为什么LC振荡器中LC回路一般都工作在失谐状态?它对振荡频率稳定度有什么影响? LC振荡器是一种基本的振荡器电路,由一个电容和一个电感器构成的电路。其中...
功放合路后自激怎么解决?针对这种自激有什么解决方法?从哪里入手? 功放合路后自激是一种常见的问题,尤其是在调试和设计电子设备时。它可能会导致设备的异常工...
解决失调电压的放大电路 在电路中,失调电压指的是输入信号在经过放大电路后,被失真的电压畸变所扭曲。即使是最好的放大电路也会因为器件的不对称或其他原因而产...
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |