完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 智能体
智能体,顾名思义,就是具有智能的实体,英文名是Agent。以云为基础,以AI为核心,构建一个立体感知、全域协同、精准判断、持续进化、开放的智能系统。智能体是人工智能领域中一个很重要的概念。任何独立的能够思考并可以同环境交互的实体都可以抽象为智能体。
文章:147个 浏览:10593次 帖子:0个
OpenAI发布了一个名为“Neural MMO”的大型多智能体游戏环境
作为一个简单的基线团队使用普通的策略梯度来训练一个小型的、完全连接的体系结构,将值函数基线和奖励折扣作为唯一增强。智能体不会因为实现特定的目标而获得奖励...
伯克利的研究人员提出了一种通用的自适应感知方法AdaSearch
传统上,机器人领域将具身搜索(embodied search)看作持续的运动计划问题,其中机器人必须平衡环境探索和对高效轨迹的选择。这就催生了既可以进行...
继OpenAI发布Dota2的团战AI后,DeepMind今天也发布了自家的最新研究
为了让这一过程更有趣,我们还设计了一个CTF的变体,其中的平面地图每一场都不一样。结果我们的智能体被迫学习到了一种“通用策略”,而非靠对地图的记忆获胜。...
由此产生的智能体,我们称之为For The Win(FTW)智能体,它学会了以非常高的标准玩CTF。最重要的是,学会的智能体策略对地图的大小、队友的数量...
长期来看,我们会扩大奖励建模的规模,将其应用于人类难以评估的领域。为了做到这一点,我们需要增强用户衡量输出的能力。我们讨论了如何循环应用奖励建模:我们可...
训练数据由(注意掩膜、状态)的轨迹组成,提前生成的轨迹用于确认我们希望模型学习的特定概念。我们为给定概念集提供一组演示(通常为5次)来训练模型,然后将模...
在开发RND之前,OpenAI的研究人员和加州大学伯克利分校的学者进行了合作,他们测试了在没有环境特定回报的情况下,智能体的学习情况。因为从理论上来说,...
DeepMind开发了PopArt,解决了不同游戏奖励机制规范化的问题
我们将PopArt应用于Importance-weighted Actor-Learner Architecture (IMPALA),这是DeepMi...
在深度强化学习中,智能体是由神经网络表示的。神经网络直接与环境相互作用。它观察环境的当前状态,并根据当前状态和过去的经验决定采取何种行动(例如向左、向右...
尽管在过去有许多尝试来形成好奇心,但本文关注的是一种自然且非常流行的方法:基于“意外”的好奇心机制。最近一篇题为“Curiosity-driven Ex...
Gibson的主要目标是帮助在现实环境中训练的模型完成迁移,这一过程分为两步。首先,在现实环境中表现自己的语义复杂性,并根据扫描过的真是场景构造环境,而...
一种从视频中学习技能的框架(skills from videos,SFV)
由于基于单帧图像预测的位姿是不连续的,在上图中可以看到明显不连贯的动作。同时由于估计器某些错误估计的存在会产生一系列奇异结果造成估计的位姿出现跳变。这会...
虽然很多基础的RL理论是在表格案例中开发的,但现代RL几乎完全是用函数逼近器完成的,例如人工神经网络。 具体来说,如果策略和值函数用深度神经网络近似,则...
2019-01-23 标签:智能体强化学习tensorflow 2877 0
UC Berkeley大学的研究人员们利用深度姿态估计和深度学习技术
给定一段视频,我们用基于视觉的动作估计器预测每一帧演员的动作qt。该动作预测器是建立在人类网格复原这一工作之上的(akanazawa.github.io...
在研究人员设想的场景中,名为Eve的第三个智能体扮演数据检验者的角色,监视Alice和Bob之间的通信。当Eve对Alice发送给Bob的内容产生怀疑时...
夺旗原本是一项广受欢迎的户外运动,被广泛的应用于电子游戏中。在一张给定的地图中,红蓝双方保护自己的旗子并抢夺对方旗子,5分钟时间内,夺旗次数最多的队伍获...
另外,策略网络表示强化学习智能体使用的随机策略,用πθ(s, a) = p(a|s;θ)表示,其中θ是神经网络的参数列表,会用Adam优化器进行更新。系...
机器学习技术已经被应用于图像识别、自然语言处理、语音识别和推荐系统等领域,取得了很大的成功。计算机视觉技术已经可以实现人脸识别、物体识别和行为识别等功能...
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |