完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 智能体
智能体,顾名思义,就是具有智能的实体,英文名是Agent。以云为基础,以AI为核心,构建一个立体感知、全域协同、精准判断、持续进化、开放的智能系统。智能体是人工智能领域中一个很重要的概念。任何独立的能够思考并可以同环境交互的实体都可以抽象为智能体。
文章:147个 浏览:10590次 帖子:0个
Atari游戏史上最强通关算法来了——Go-Explore!
普通的强化学习算法通常无法从蒙特祖玛的第一个房间(得分400或更低)中跳出,在Pitfall中得分为0或更低。为了解决这类挑战,研究人员在智能体到达新状...
如何让多个智能体学会一起完成同一个任务,学会彼此合作和相互竞争
多智体强化学习(Multi-agent reinforcement learning, MARL)假设有一组处在相同环境下的自主智能体。在MARL中学习...
在多智能体系统中,每个智能体具有独立性和自主性,能够解决给定的子问题,自主地推理和规划并选择适当的策略,并以特定的方式影响环境。
本视频主要详细介绍智能体的基本特性,分别是自治性(Autonomy)、反应性(Reactive)、主动性(Proactive)、社会性(Social)、进化性。
2019-01-12 标签:智能体 8323 0
这些都是除了从零学习之外的强化学习方法。特别是元学习和零次学习体现了人在学习一种新技能时更有可能的做法,与纯强化学习有差别。一个元学习智能体会利用先验知...
需要注意的是,这种方法只能应用于偶尔发生的马尔科夫决策过程。原因是在计算任意返回之前,这一episode就要停止。我们并不在每次动作结束后就更新,而是在...
DeepMind的“星际2”智能体AlphaStar实际上是演化算法?
在AlphaStar中,用于训练智能体的基于人口的训练策略(PBT)是使用拉马克进化(LE)的模因算法:在内环中,使用反向传播连续训练神经网络,而在外环...
按照以往的做法,如果研究人员要用强化学习算法对奖励进行剪枝,以此克服奖励范围各不相同的问题,他们首先会把大的奖励设为+1,小的奖励为-1,然后对预期奖励...
TRFL库包含实现经典RL算法以及更前沿技术的许多函数。这里提供的损失函数和其他操作是在纯TensorFlow中实现的。它们不是完整的算法,而是在构建功...
DeepMind和OpenAI攻克蒙特祖玛的复仇并没有看上去意义那么重大
在这篇文章中,我想讨论的是,这些方法是为了解决蒙特祖玛的复仇游戏的第一个关卡,以及为什么在游戏环境以及Deep RL的长期目标中,这些方法并没有看上去意...
基于TensorFlow的开源强化学习框架 Dopamine
对于新的研究人员来说,能够根据既定方法快速对其想法进行基准测试非常重要。因此,我们为 Arcade 学习环境支持的 60 个游戏提供四个智能体的完整培训...
2018-08-31 标签:智能体强化学习TensorFlow 4923 0
整个DeepMimic所需要的input分为三部分:一个被称为Character的Agent模型;希望Agent学习的参考动作(reference mo...
多智体深度强化学习研究中首次将概率递归推理引入AI的学习过程
在传统的多智体学习过程当中,有研究者在对其他智能体建模 (也即“对手建模”, opponent modeling) 时使用了递归推理,但由于算法复杂和计...
伯克利RISELab推出了多主体强化学习包Ray RLlib 0.6.0
在缓解交通拥堵方面,只需要控制极少量自动驾驶车辆的速度,就能大幅度提高交通流的效率。多主体强化学习就可以用于这样的场景,在混合驾驶的情况下我们暂时无法通...
近年来,强化学习在许多复杂游戏环境中取得了令人瞩目的成绩,从Atari游戏、围棋、象棋到Dota 2和星际争霸II,AI智能体在越来越复杂的领域迅速超越...
利用视频游戏语料库,训练一个GAN模型为超级马里奥兄弟生成游戏级别
在视频游戏中,马里奥游戏级别有不同的表征Level Corpus (VGLC) 和Mario AI 框架,这两种都是基于tile的表征形式。具体地说,以...
一种新型的基于情景记忆的模型,能够让智能体用“好奇心”探索环境
当你在超市中搜索时,心里可能会想:现在我在肉类区域,所以接下来可能到水产品区。这些都应该是相近的。如果你预测错了,可能会惊讶:诶?怎么是蔬菜区?从而得到...
如图所示。玩家使用左下角转向按钮来控制移动,而右下角则设置按钮来控制技能。可通过主屏幕观察周围环境,还可以通过左上角迷你地图了解完整的地图情况,其中可观...
强化学习作为一种常用的训练智能体的方法,能够完成很多复杂的任务。在强化学习中,智能体的策略是通过将奖励函数最大化训练的。奖励在智能体之外,各个环境中的奖...
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |