完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 电弧
电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花。电弧是一种自持气体导电(电离气体中的电传导),其大多数载流子为一次电子发射所产生的电子。
电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花。电弧是一种自持气体导电(电离气体中的电传导),其大多数载流子为一次电子发射所产生的电子[1] 。触头金属表面因一次电子发射(热离子发射、场致发射或光电发射)导致电子逸出,间隙中气体原子或分子会因电离(碰撞电离、光电离和热电离)而产生电子和离子。另外,电子或离子轰击发射表面又会引起二次电子发射。当间隙中离子浓度足够大时,间隙被电击穿而发生电弧[1] 。
电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花。电弧是一种自持气体导电(电离气体中的电传导),其大多数载流子为一次电子发射所产生的电子[1] 。触头金属表面因一次电子发射(热离子发射、场致发射或光电发射)导致电子逸出,间隙中气体原子或分子会因电离(碰撞电离、光电离和热电离)而产生电子和离子。另外,电子或离子轰击发射表面又会引起二次电子发射。当间隙中离子浓度足够大时,间隙被电击穿而发生电弧[1] 。
开关电器的基本功能就是能够在所要求的短时间内分合电路,即起所谓开关的作用,机械式开关设备是用触头来开断电路电流的,在大气中开断电路时,只要电压超过12—20V,被开断的电流超过0.25—1A,在触头间隙(也称弧隙)中通常产生一团温度极高、发出强光且能够导电的近似圆柱形的气体,这就是电弧[2] 。一直到电弧熄灭,触头间隙成为绝缘介质后,电流才被开断。发生在开关设备中的电弧简称为开关电弧。这种开关电弧现象,也即电弧燃烧和熄灭过程是开关电器最重要的内容。开关电弧是等离子体的一种形式,属低温等离子体。开关电器中电弧的熄灭就是要积极地利用电弧等离子体的温度控制来实现,对于高电压大电流电路来说、只有产生电弧、才能实现对电弧等离子体的温度控制。对于开关电器而言,希望它反有如下特件[3] ;(1)电导率的变化范围尽可能大,即要在导体与完全绝缘体之间变化;(2)电导率的变化速度尽可能快。前一项特性在本质上决定于等离子体的材料,因此,引进新的灭弧介质是取得技术进步的关键。后一项特性虽然也在较大程度上决定于等离子体的材料,但更易于受到等离子体控制方法的影响,作为开关电器核心部分的灭弧室的作用正在于对电弧等离子体的控制,加速其电导率的变化。
电弧放电
电弧是一种气体放电现象,也是一种等离子体。等离子体是与固体、液体、气体并列的物质第四态。以50000K为界,等离子体可分为高温等离子体和低温等离子体两大类,电弧属于后者。实际上,宇宙中约90%的物质都是等离子体。等离子体是物质的第四态
等离子体是物质的第四态开关电弧是电弧等离子体的一种。开关电弧的主要外部特征有[2] :(1)电弧是强功率的放电现象 在开断几十千安短路电流时,以焦耳热形式发出的功率可达l0000kW。与此有关,电弧可具有上万摄氏度或更高的温度及强辐射,在电弧区的任何固体、液体或气体在电弧作用下都会产生强烈的物理及化学变化。在有的开关中.电弧燃烧时间比正常情况只多一二十毫秒,开关就会出现严重烧损甚至爆炸。在用灭弧能力很弱的隔离开关开断负荷电路时(属于误操作),电弧能使操作者大面积烧伤。(2)电弧是一种自持放电现象 不用很高的电压就能维持相当长的电弧稳定燃烧而不熄灭。如在大气中,每厘米长电弧的维持电压只有15V左右。在大气中,在100kV电压下开断仅5A的电流时,电弧长度可达7m。电流更大时,可达30m。因此,单纯采用拉长电弧来熄灭电弧的方法是不可取的。(3)电弧是等离子体,质量极轻、极容易改变形状 电弧区内气体的流动,包括自然对流以及外界甚至电弧电流本身产生的磁场都会使电弧受力,改变形状,有的时候运动速度可达每秒几百米。设计人员可以利用这一特点来快速熄弧并预防电弧的不利影响及破坏作用。两个电极在一定电压下由气态带电粒子,如电子或离子,维持导电的现象。激发试样产生光谱。电弧放电主要发射原子谱线,是发射光谱分析常用的激发光源。通常分为直流电弧放电和交流电弧放电两种。气体放电中最强烈的一种自持放电。当电源提供较大功率的电能时,若极间电压不高(约几十伏),两极间气体或金属蒸气中可持续通过较强的电流(几安至几十安),并发出强烈的光辉,产生高温(几千至上万度),这就是电弧放电。电弧是一种常见的热等离子体(见等离子体应用)。电弧放电最显著的外观特征是明亮的弧光柱和电极斑点。电弧的重要特点是电流增大时,极间电压下降,弧柱电位梯度也低,每厘米长电弧电压降通常不过几百伏,有时在1伏以下。弧柱的电流密度很高,每平方厘米可达几千安,极斑上的电流密度更高。电弧放电可分为 3个区域:阴极区、弧柱和阳极区。其导电的机理是:阴极依靠场致电子发射和热电子发射效应发射电子;弧柱依靠其中粒子热运动相互碰撞产生自由电子及正离子,呈现导电性,这种电离过程称为热电离;阳极起收集电子等作用,对电弧过程影响常较小。在弧柱中,与热电离作用相反,电子与正离子会因复合而成为中性粒子或扩散到弧柱外,这一现象称为去电离。在稳定电弧放电中,电离速度与去电离速度相同,形成电离平衡。此时弧柱中的平衡状态可用萨哈公式描述。能量平衡是描述电弧放电现象的又一重要定律。能量的产生是电弧的焦耳热,能量的发散则通过辐射、对流和传导三种途径。改变散热条件可使电弧参数改变,并影响放电的稳定性。电弧通常可分为长弧和短弧两类。长弧中弧柱起重要作用。短弧长度在几毫米以下,阴极区和阳极区起主要作用。根据电弧所处的介质不同又分为气中电弧和真空电弧两种。液体(油或水)中的电弧实际在气泡中放电,也属于气中电弧。真空电弧实际是在稀薄的电极材料蒸气中放电。这二种电弧的特性有较大差别。电弧是一束高温电离气体, 在外力作用下, 如气流,外界磁场甚至电弧本身产生的磁场作用下会迅速移动(每秒可达几百米),拉长、卷曲形成十分复杂的形状。电弧在电极上的孳生点也会快速移动或跳动。在电力系统中,开关分断电路时会出现电弧放电。由于电弧弧柱的电位梯度小,如大气中几百安以上电弧电位梯度只有15伏/厘米左右。在大气中开关分断100千伏5安电路时,电弧长度超过7米。电流再大,电弧长度可达30米。因此要求高压开关能够迅速地在很小的封闭容器内使电弧熄灭,为此,专门设计出各种各样的灭弧室。灭弧室的基本类型有:①采用六氟化硫、真空和油等介质;②采用气吹、磁吹等方式快速从电弧中导出能量;③迅速拉长电弧等。直流电弧要比交流电弧难以熄灭。电弧放电可用于焊接、冶炼、照明、喷涂等。这些场合主要是利用电弧的高温、高能量密度、易控制等特点。在这些应用中,都需使电弧稳定放电。目前的电子产品,如等离子电视、等离子显示器其显示原理也是依赖电弧放电。电弧不单单只是对人有坏处,某些大型舞台的灯光师利用电弧放电原理而制造成七彩斑斓的电弧花,以满足人们对于电弧的稀奇。电弧具有超强的电力,能瞬间使心脏停跳,所以,利用电弧而工作的人们需要小心。
电弧的组成部分
电弧通常分为三个区域:阴极区、弧柱区、阳极区[5]
电弧的组成部分
阴极和阴极区电弧中的电流从微观上看是电子及正离子在电场作用下移动的结果,其中电子的移动构成电流的主要部分。阴极的作用是发射大量电子,在电场的作用下趋向阳极方向从而构成阴极区的电流。电弧的阴极区对电弧的发生和物理过程具有重要的意义,形成电弧放电的大部分电子是在阴极区产生或由阴极本身发射的。电弧放电时,实际上并不是整个阴极全部参加放电过程,阴极表面的放电只集中在几个很小的区域,这个小区域称为阴极斑点,它是一个非常集中,面积很小的光亮区域,其电流密度很大.是电弧放电中强大电子流的来源。阴极发射电子的机制有两种:热发射和场致发射。
弧柱阴极表面电于发射只形成阴极区的电流,弧柱部分导电需要在弧柱区域也能出现大量自由电子,这就需要使弧柱区的气体原子游离。气体原子游离的方式通常有电场游离和热游离两种。与可逆化学反应相似。在电弧中一方面由于热游离使得正离子与电子不断增多。同时也存在去游离的作用,使正离子和电子减少。去游离包括复合和扩散两种方式。弧柱的特性和物理过程对电弧起着重要的作用。开关电弧中主要研究的就是弧柱的特性。
阳极和阳极区可把阳极分为被动型和主动型两种。在被动型中。阳极只起收集电子的作用。在主动型中,阳极不但收集电子而且产生金属蒸气,因而也可以向弧柱提供带电粒子。阳极表面也存在阳极斑点。上述三个区域对电弧的作用因电弧的情况不同而不同。对于长度只有几个毫米的电弧。电弧电压主要由阴极区压降和阳极区压降组成,其中的物理过程对电弧起主要作用。这种电弧称为短弧。而对于长度较大的电弧,弧柱则起主要作用,阴极、阳极的过程不起主要作用甚至可以忽略,这种电弧称为长弧。在开关中的电弧一般属于长弧。
电弧发生的条件
1、电路开断时电弧的发生[6] 在触头开始分离时.作用在它们之间的接触压力将减少,接触面积也缩小,接触电阻和触头中放出的热量就增加。热量集中在很小的体积中,金属被加热到高温而熔化。在触头之间形成液态金属桥,最后金属桥被拉开,在触头之间形成过渡的或稳定的电弧。如果放电是稳定的,就是所谓的开断电弧。放电稳定性与很多因素有关,如在开断的的电流、触头电路的特性、触头分离的速度等。为了使电弧点燃,某一最低电流值是必需的。2、触头闭合时电弧的发生3、真空和气体间隙的击穿4、从辉光放电到电弧放电的转变5、从火花放电到电弧放电的转变。
如何避免电弧的产生
要消除电弧,只能从电弧产生的原因方面去想办法。
我们来看巴申曲线:
曲线中的击穿电压Ujc存在最小值Ujc.min,并且从Ujc.min的左侧和右侧开始,随着pl(压强与弧隙宽度的乘积)变小或者变大,击穿电压Ujc会变大。
因此在工程上,我们在开关触头所在的空间中采取抽真空,或者加入高压的SF6气体,都能有效地抑制电弧。
看下图的真空灭弧室和真空断路器:
在看下图的GIS复合开关:
除此之外,用电力电子的方法来消除电弧,也是很常用的方法。例如晶闸管及其控制电路:
不过,电弧有的时候也并非没用。我们甚至还可以利用电弧的某种效应来抑制电弧,这就是低压电器中的近阴极效应。
上图中,原本左边是阳极,右边是阴极。我们看到,电弧中的正离子从阳极出发射向阴极,并在阴极附近产生一定程度的堆积。
再看下图:当交流电流方向换向后,左侧的阳极变成新阴极,但阳离子相对电子来说其体积大质量大跑不快,仍然滞留在新阴极附近,使得新阴极发射电子的功能受阻。这种效应叫做近阴极效应。
近阴极效应能有效地阻止短弧电弧的重燃,对电弧电流起到限流作用,因此是低压开关电器中广泛使用的熄弧方法。
总之,如何抑制电弧和熄灭电弧,是很有知识含量和技术含量的,是一项非常综合的技术范畴,值得我们去探讨和研究。
本文开始介绍了什么是电弧和电弧的组成部分。其次介绍了电弧的分类,最后阐述了电弧发生的条件及分析了电弧打火机能否电死人。
2018-02-06 标签:电弧 5.5万 0
本文主要介绍的是电弧,首先介绍了电弧产生的原因及原理图,其次介绍了电弧特点及用途、特性,最后阐述了电弧产生的危害及灭弧措施,具体的跟随小编一起来了解一下吧。
2018-05-10 标签:电弧 5.3万 0
下面主要介绍了做一个ZVS高压电弧发生器的方法步骤。所需材料有:两个大U铁氧体芯;大量漆包线;电工胶带;管螺纹Teflon胶带;导热灌封机胶;美工刀;胶...
我们先来了解一下自动焊接机器人都有哪些焊接参数。焊接参数包括焊接速度、焊接电流、电压、机械臂摆动幅度、焊接方向等的设置,合适的焊接参数可以提高焊接的稳定...
对电弧的发展方向(增强还是减弱)起作用的有外部因素和内部因素。一下几个主要方面或因素是电弧燃烧过程中的游离现象:电子发射,导体在电场作用下,其中的自由电...
2019-05-27 标签:电弧 2.3万 0
电阻焊,是指利用电流通过焊件及接触处产生的电阻热作为热源将想件局部加热,同时加压进行焊接的方法。焊接时,不需要填充金属,生产率高,焊件变形小,容易实现自动化。
电弧由阴极区、阳极区和弧柱区三部分组成,如图1所示。阴极和阳极附近的区域分别称为阴极区和阳极区,在阴极和阳极间的明亮光柱称为弧柱。弧柱区中心部位温度最高...
2019-05-13 标签:电弧 1.7万 0
电弧产生原理图也是一个简易 高压发生器 电路,使用一块固定频率脉宽调制电路TL494 产生方波信号控制MOS 管Q1,Q1 上的交变电流在通过串联的黑白...
2012-04-16 标签:电弧 1.6万 0
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |