完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 电源芯片
是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。
电源管理芯片,是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。常用电源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。
基本类型
主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。
电源管理芯片,是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。常用电源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。
基本类型
主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。
应用范围
电源管理芯片的应用范围十分广泛,发展电源管理芯片对于提高整机性能具有重要意义,对电源管理芯片的选择与系统的需求直接相关,而数字电源管理芯片的发展还需跨越成本难关。
当今世界,人们的生活已是片刻也离不开电子设备。电源管理芯片在电子设备系统中担负起对电能的变换、分配、检测及其它电能管理的职责。电源管理芯片对电子系统而言是不可或缺的,其性能的优劣对整机的性能有着直接的影响。
提高性能
所有电子设备都有电源,但是不同的系统对电源的要求不同。为了发挥电子系统的最佳性能,需要选择最适合的电源管理方式。首先,电子设备的核心是半导体芯片。而为了提高电路的密度,芯片的特征尺寸始终朝着减小的趋势发展,电场强度随距离的减小而线性增加,如果电源电压还是原来的5V,产生的电场强度足以把芯片击穿。所以,这样,电子系统对电源电压的要求就发生了变化,也就是需要不同的降压型电源。为了在降压的同时保持高效率,一般会采用降压型开关电源。同时,许多电子系统还需要高于供电电压的电源,比如在电池供电设备中,驱动液晶显示的背光电源,普通的白光LED驱动等,都需要对系统电源进行升压,这就需要用到升压型开关电源。此外,现代电子系统正在向高速、高增益、高可靠性方向发展,电源上的微小干扰都对电子设备的性能有影响,这就需要在噪声、纹波等方面有优势的电源,需要对系统电源进行稳压、滤波等处理,这就需要用到线性电源。上述不同的电源管理方式,可以通过相应的电源芯片,结合极少的外围元件,就能够实现。可见,发展电源管理芯片是提高整机性能的必不可少的手段。
开关电源控制芯片r7731的工作原理
供电(启动):芯片的VDD脚接一个电容到地,一个电阻到输入电压正极,上电时输入电压通过电阻给电容充电,当电容上的电压充到芯片的启动电压门限值时,芯片开始工作。
供电(维持):为了节能,启动电阻都比较大,单靠电阻电容不能提供维持芯片正常工作所需的电流,所以要在高频变压器上设一个供电绕组给芯片供电。芯片一旦启动工作,该绕组的输出电压就为芯片提供持续的电源。
开关管驱动:芯片一旦启动工作,GATE脚便驱动开关管导通或截止,各输出绕组便有电压输出。
开关管电流检测:开关管源极接一个电流采样电阻,采样电压送到芯片CS脚,当电流达到设计的最大值时,CS脚电压大于芯片内部设定的基准电压,GATE脚电压变低,关断开关管。
输出电压反馈:输出电压的变化经光藕反馈到芯片COMP脚,控制占空比。 振荡频率:RT脚到地的电阻大小,决定开关频率。
电源管理的原理和方法
多年来,随着系统内电源数量的增多,为了确保其安全、经济、持续和正常的工作,特别是在使用微处理器时,对电源轨进行监测和控制变得非常重要。确定电压轨是超过阈值还是处于工作范围内,以及该电压相对于其它电压轨是否按照正确的时序上电或断电,这些对于系统运行的可靠性和安全性来说都是至关重要的。
对于这个问题,有许多解决方案。例如,利用由精密电阻分压器、比较器和基准电压源组成的简单电路,就能够检测电压轨上的电压是高于还是低于规定的电平。在复位发生器中,如ADM809,将这类器件与延迟器件结合在一起,能够使微处理器、ASIC(专用集成电路)以及DSP(数字信号处理器)等在上电时便处于复位状态,这种类型的监控适合于多种应用。
当需要监控多路电压轨时,会需要更多的不只是用于简单监控电压的监控IC。例如,考虑一个常见的电源时序控制需求:FPGA(现场可编程门阵列)制造商规定,在向器件提供5V I/O(输入/输出)电压之前,必须先施加3.3V的内核电压,并持续至少20ms,以避免器件上电时受到损坏。对于系统的可靠性来说,满足这样的时序要求就像要保证器件在规定的电源电压和温度范围内工作一样至关重要。
随着应用的发展,电源轨数量也在显著增加。一些复杂、昂贵的系统,如LAN(局域网)交换机和蜂窝电话基站,线路卡通常会包含10路或更多电压轨;即使是成本敏感的消费类系统,如等离子电视,也可能具有多达15路的独立电压轨,其中许多电压轨都需要进行监控和时序控制。
目前,许多高性能的IC都需要多路电压。例如,提供独立的内核电压和I/O电压已成为许多器件的标准。在高端系统中,每个DSP器件会需要多达四个独立的电源。而在更多情况下,单一系统中可能存在着大量的多电源器件,包括FPGA、ASIC、DSP、微处理器和微控制器(以及模拟器件)。
系统中有许多器件都可以采用标准电源电压供电(如3.3V),而另一些器件可能需要专用电压。此外,某些标准电压可能还需要用到很多不同的地方。例如,有时会需要像3.3 VANALOG和3.3 VDIGITAL这样独立的模拟电源和数字电源。为了提高效率(如存储器电源轨的电流会达到数百安培)或满足时序要求(个别器件在不同时间需要3.3 VA以及3.3 VB),可能需要多次产生相同的电压。所有这些因素都导致电源数量的增加。
电压监控和时序控制有时会变得极为复杂,特别是当一个系统必须设计为能够支持上电时序控制和断电时序控制,并能够在工作期间的不同时间点上对不同电源轨上的所有可能故障状况均产生多种响应时。中心电源管理控制器是解决这个难题的最佳方案。
随着电源电压数量的增加,发生故障的几率也随之增加。其风险与电源数量、器件数量和系统复杂程度成正比,外部因素也会增加风险。例如,如果在初始设计阶段没有完整地定义出主ASIC的特性,那么电源设计工程师必须用硬连线实现电压监控阈值和时序控制,但这些都可能会随着ASIC技术指标的改变而发生变化。如果需求发生改变,那么PCB(印制电路板)必须进行修改,这显然会影响开发进度和成本。另外,某些特定器件的电源电压技术指标可能会在开发过程中有所改变。在这种情况下,对于任何一个中心电源系统管理器来说,易于调整电源的方法将会是非常有用的。事实上,对这种系统的电压轨进行监控、时序控制和调节时,灵活性是非常重要的。
对选定的故障保护机制和时序控制的鲁棒性进行评估是一件相当庞大的工作,因此,能够简化这一过程的器件将加速电路板的评估,并缩短上市时间。不论是在工作现场,还是从早期PCB开发到原型评估的各个设计阶段,故障记录以及数字化的电压和温度数据都是很有用的特性。
基本监控
下图所示为利用ADCMP361监控多路电压轨的简单方法,这是一款内置基准电压的双极性输出、±0.275%精度的比较器 。由于ADCMP361内置400mV高精度基准电压源,因此可以精确的监控非常低的电压,例如0.9V 的电压轨。其中,每路电压轨都使用独立的电路。电阻分压器将电压轨按比例降低,并为每一路电源设置一个欠压跳变点。所有的输出被连接在一起,产生通用电源良好信号。
基于比较器的欠压检测,提供通用电源良好输出,可用于3路电源系统
由于采用更低电源电压的新工艺的发展,加上遗留的I/O电压要求,近年来复杂系统中电压轨的数量大幅增加。当需要监控多路电压轨时,可以使用能分别监控两路或三路电压轨的多电压监控器,如ADM13305以及ADM13307。ADM6710与ADM1184还可以监控四路电压轨。ADM6710可提供预调电压阈值,ADM1184可提供4个高精度(±0.8%)的可调输入信号,能够利用外部电阻分压器网络设置跳变阈值。
多电压监控器
表1 多电压监控器
更小的工艺尺寸正在推动内核电压向更低的方向发展。通常在大电流情况下,必须有效地提供低电压,而且必须遵守严格的调节和瞬态指标。低压时余量的不足可能会引起预想不到的器件行为。例如,如果电源电压下降到电信ASIC的阈值以下,芯片的工作会出现异常,可能导致正在发送的信息被破坏或者数据丢失。随着内核电压的下降,对高精度电压监控器的要求将更加苛刻,如图所示。
图 需要高精度监控器
在这个例子中,1 V稳压电源实际的电压范围是0.97 V~1.03 V。微处理器可接受的核心电压是1 V (±5%),即0.95 V~1.05 V。因此,欠压监控范围为2%。而ADM13305、ADM13307与ADM1184的可调输入在整个温度范围内的精度高达±0.8%,电阻分压器的精度为±0.1%,这使得欠压电平监控精度范围能保持在2%以内。
基本时序控制
图3所示的是如何利用分立器件实现基本的时序控制,此处采用逻辑阈值而不是比较器。12V和5V电源轨是由其它电路产生的。为了确保系统能够正确工作,必须引入一段时间延迟。这里是通过使用RC(电阻电容)电路来缓慢升高与5V电源串联的N沟道FET的栅极电压而实现的。所选用的RC值可确保FET在达到阈值电压并导通之前能获得足够的延迟时间。3.3V和1.8V电源轨是由线性稳压器ADP120和ADP130产生的。这些电压的上电时间也是利用RC来进行时序控制的。由于RC能驱动每个LDO的EN(使能)引脚,因此无需串联FET。选定的RC值要确保在EN引脚上的电压爬升到其阈值之前有足够的延迟时间(t2,t3)。
这种简单、低成本的电源时序控制方法只占用很少的电路板面积,因此可用于多种应用。这种方法适合于成本是主要考虑因素、时序要求很简单,且时序控制电路的精确性不是十分重要的系统。
但许多情况需要比RC延迟电路更高的精确性。此外,这种简单的解决方案也不允许以结构化的方法处理故障(例如,一个5V电源失效最终将影响到其它电源轨)。
图3 四路电源系统的基本分立式时序控制
利用IC进行时序控制
市场上有各种各样的电源时序控制器。有些器件能够直接实现电源模块的输出,并提供多种输出配置。有些器件内置电荷泵电压发生器,对于需要对更高电压轨进行时序控制、却又缺少高压源(如12V电源轨)的低压系统来说,这一点特别有用,能够驱动N沟道FET的栅极。许多这类器件具有使能引脚,可以接受来自于按钮开关或控制器的外部信号,以便在需要时重新启动时序控制或关断所控制的电压轨。
图4所示的是如何使用电源时序控制器 ADM6820和ADM1086精确且可靠地对系统中的电源轨进行时序控制。内部比较器检测电压轨何时会超过精密的设定电平,经过可编程的上电延迟之后,产生输出,使线性稳压器ADP120和ADP130能按照期望的时序工作。阈值通过电阻比值来设定,延迟通过电容来设定。
图4 使用监控IC对四路电源系统进行时序控制
集成的电源系统管理
当今的复杂系统往往需要多达四路电压,并需要对低压内核电压进行更精确的监控,还需要对电压轨的上电与断电时序进行监控。这些低压需要被精确监控,然后以正确的时序上电和断电,同时确保每个电压轨之间正确的延时。例如,如果电源电压下降到阈值以下或者打印机ASIC中的电源没有正确的上电或断电,那么器件的工作将会出现异常,可能导致数据丢失。
图5 打印机应用中的上电与断电时序
ADM1186系列产品在整个温度范围内提供±0.8%的电压阈值监控精度,这对低电压轨的监控至关重要。本文将在打印机应用的实例中说明这种监控,如图5所示。ADM1186还利用数字内核实现了上电和断电(顺序相反)的时序控制,无需软件支持。对于ADM1186-1来说,多个器件可通过级联来对8、12、16路乃至更多的电源进行上电和断电时序控制。通过专用的电容可编程时序引脚设置,能够更容易且更精确的控制电源之间的延时,无需在电源轨监控引脚增加电容。利用这一灵活性,就可以独立而精确的控制时序延时以及器件的故障响应时间。除了时序延时,ADM1186还提供可编程消隐延时,使设计人员可为电源设置最大时限,在启动后将电源电压提升到欠压阈值之上。
四通道电压监控器与电源时序控制器
表2 四通道电压监控器与电源时序控制器
有些系统具有许多电源轨,采用这种使用大量IC,并利用电阻和电容来设置时序和阈值电平的分立解决方案会变得过于复杂、成本过高,且不能提供适当的性能。
具有八路电压轨的系统会需要复杂的上电时序控制。每路电压轨都要监控,以免出现欠压或过压故障。发生故障时,根据故障机制,需要关断所有电源电压,或初始化电源关断时序。此外,必须根据控制信号的状态采取相应措施,并根据电源的状态产生标志位。如果使用分立器件和简单的IC来实现如此复杂的电路,可能需要数以百计的器件,这将会占用很大的电路板空间,并耗费大量成本。
在具有四路或更多电源的系统中,使用集中式器件来管理电源比较可取。图6所示的是采用这种方法的一个例子。
图6 用于八路电源系统的集中式时序控制与监控解决方案
集中式监测和时序控制
ADM106x Super SequencerTM11系列产品使用比较器,但是有一些不同之处。每个输入端都有两个专用比较器,以实现欠压和过压检测,这样便可对DC/DC转换器ADP1821和ADP2105以及LDO ADP1715所产生的电压轨提供窗口监控。在电源上电之前,欠压故障是正常的状态,因此这个指示可用于时序控制。过压状态通常表示一种严重故障,如FET或电感器短路,必须立即采取行动。
通常,系统中包含的电源数量越多,系统就越复杂,因此精度限制也越严格。另外,在低压状态下,例如1.0V和0.9V,利用电阻来设定精确的阈值也变得很有挑战性。虽然对于5V电源轨来说,可接受10%的容差,但对1V电源轨来说,这个容差是不能接受的。ADM1066在最坏情况下允许输入检测器比较器的阈值被设定在1%范围内,而与电压(低至0.6V)无关,并可工作在该器件允许的整个温度范围内。这可以增加每个比较器的内部毛刺滤波和迟滞。其逻辑输入可用于启动上电时序控制、关闭所有电源轨,或执行其它功能。
比较器的信息被送入功能强大和灵活的状态机内核,这些信息具有以下几种用途。
时序控制:当最近的使能电源的输出电压进入到窗口中时,时间延迟被触发,以按照上电时序接通下一个电源轨。可能需要具有多重上电与断电时序,或具有差别较大的上电与断电时序的复杂时序控制。
超时:如果已经使能的电源轨没有按照预期上电,可以执行一套适当的应对措施(例如产生一个中断信号或关闭系统)。相比之下,纯模拟的解决方案只会令系统简单地挂在时序中的那一点上。
监控:如果任一电源轨上的电压超出了预设的窗口,可以根据发生故障的电源轨、故障类型和当前的工作模式,采取适当的应对措施。含有五路以上电源的系统通常都相当昂贵,因此全面的故障保护是极为重要的。
即使系统中的最高电压只有3V,仍然可以通过内置电荷泵产生大约12V的栅极驱动电压,从而允许输出能够直接驱动串联的N沟道FET。其它额外的输出能够使能或关断DC/DC转换器或稳压器,使输出内部上拉至其中一个输入电压或内置的稳压电压。输出也可以被指定为开漏输出。输出可以用作状态信号,如电源良好或上电复位。如果需要的话,状态LED可以直接由输出来驱动。
电源调整
除了能够监控多路电压轨并提供复杂的时序控制解决方案之外,ADM1066等集成电源管理器件还可以用于暂时或永久调整某些电压轨电压。通过调节器件上调整节点或反馈节点上的电压,可以改变DC/DC转换器或稳压器的电压输出。一般来说,通过介于输出与地之间的电阻分压器,来调整/反馈引脚上设置的标称电压,从而设置标称输出电压。通过切换反馈回路中的额外电阻或控制可变电阻的简单方案,可以改变调整/反馈电压,进而调节输出电压。
ADM1066具有DAC(数模转换器),可以直接控制调整/反馈节点。为了实现最大的效率,这些DAC不会在地与最大电压间工作,而是会以标称的调整/反馈电平为中心点,在一个相当窄的窗口中工作。衰减电阻器的阻值可决定电源模块输出的递增变化和DAC的每个LSB变化。这种开环调节方式提供了提升容限或降低容限的标准,相当于那些利用参考电路中的数字电阻切换所获得的结果,而且可以将输出调节到类似的精度。
ADM1066还包含一个用来测量电源电压的12bit ADC(模数转换器),以实现闭环电源电压调节方案。通过给定的DAC输出设置,电源模块的电压输出可由ADC采集转换,并利用软件与所设定的目标电压进行比较。这样,便可调整DAC来校准电压输出,使其尽可能接近目标电压。这个闭环方案提供了一个非常精确的电源调节方法。使用闭环方法时,与外部电阻的精度无关。在图6中,DC/DC4的输出电压便是利用其中一个内置DAC来进行调整的。
这种电源调节方案有两个主要应用。首先是电源容限的概念,也就是说,当电源处于规定的设备电源电压范围边界时,测试系统对电源做出的反应。数据通信、电信、蜂窝电话基础设施、服务器和存储区域网络设备等制造商在将其系统交付给终端客户之前,必须进行严格的测试。系统中的所有电源电压都应该在一定的容差范围内工作(例如±5%、±10%)。通过确保正确运行所进行的测试,电源容限允许所有的内置电源被调节到容差范围的上限和下限。具有电源调节能力的集中式电源管理器件,可用于进行这种容限测试,同时使得只需完成一次测试所需的额外器件最少、PCB面积最小——在制造商的测试地点进行容限测试期间。
通常需要进行全范围测试,也就是,在设备的整个工作电压范围和整个温度范围内进行测试, ADM1062不仅集成了闭环电源容限电路,还集成了温度检测和回读功能。
电源调节方案的第二个应用是补偿工作现场的系统电源波动。造成电源波动的原因有许多种,就短期而言,当温度改变时,电压的轻微变化是十分常见的;就长期来说,某些器件参数可能会随产品的长期使用而产生轻微的漂移,这也可能导致电压的漂移。ADC及DAC环路可被周期性地激活(例如每10 s、30 s或60 s),再加上软件校准环路,就可以使电压保持在其应有的范围内。
灵活性
ADM1066具有内置非易失性存储器,在系统开发过程中,当时序控制与监控需求不断发展时,可以根据需要进行多次重新编程,这意味着硬件设计可以在产品原型设计的初期完成,而监控和时序控制的优化可以随着项目的进展来进行。
数字温度和电压测量等功能可以简化并加速评估过程;容限工具则允许在开发过程中对电源电压进行调节。因此,当关键的ASIC、FPGA或处理器也正处在开发阶段,且由于推出新版本的芯片,引起电源电压电平或时序需求不断变化,可以通过软件14 GUI(图形用户界面)来完成简单的调节。在几分钟内对电源管理器件进行重新编程,将变化因素考虑进去,而无需对电路板上的器件进行物理级改变,也不会发生需要重新设计硬件等更糟的状况。
Super Sequencer器件
表3 Super Sequencer器件
结论
电源轨数量的不断增加和电源时序控制技术的兴起以及更低电压轨的发展趋势,增加了许多类型的设备和系统,从笔记本电脑、个人计算机、机顶盒、汽车系统到服务器与存储设备、蜂窝电话基站以及因特网路由器与交换机系统,对电源设计工程师的要求也随之增加。随着内核电压的不断下降,为了确保鲁棒性与高可靠的运行,对这些电压进行高精度监控的需求变得更加关键。更严格的测试程序、信息更新以及快速且简单的编程能力也都受到关注,特别是中高挡系统。为了提升系统的鲁棒性和可靠性,并加入这些至关重要的新特性,市面上已推出许多新的电源管理器,帮助用户安全、有效地解决这些问题,同时减小电路板面积,并缩短产品上市时间。
QR模式在反激电源中被称为准谐振反激模式,是DCM(不连续导电模式)的一种。它是指在磁芯能量完全释放完毕后,变压器的初级电感和MOS的结电容进行谐振,...
离线式开关电源主要通过高频开关变换技术,将输入的直流电或交流电转换成设备所需的稳定直流电。其内部包含整流、滤波、开关变换、输出整流滤波等电路单元,共同协...
从LED照明驱动可靠性的角度来说,电源芯片永远是核心。其他被动器件当然也很重要,但是芯片的可塑性更强。好的芯片和一般的芯片,在稳定性、节能性、使用寿命等...
为了实现高精度的恒流/恒压(CC/CV)特性,必然要采用新的技术来监控负载、电源和温度的实时变化以及元器件的同批次容差,这就涉及到初级(原边)调节技术、...
恒流电源也叫稳流电源,是指将稳定的电压源加在固定的电阻的两端,使流过电阻的电流一定是恒定的设备。对于负载的阻抗有较大的变化,而要求负载电流基本不变的设备...
随着能源危机和环境问题的日益严重,高效率的电源驱动器越来越受到重视。采用先进的电源转换技术和优化设计,可以显著提高电源驱动器的效率,降低能耗。采用好品质...
随着折叠屏手机的技术不断成熟再加上AI大模型与折叠屏手机的结合,手机消费形式被革新,这将进一步刺激消费者的换机需求,折叠屏手机整体渗透率有望提升。电子设...
48V工业电源的辅助电源/POE电源的主电源控制芯片-PN8080
一、概述PN8080是内置高压低导通电阻MOSFET的开关稳压器。在单个IC中集成了功率开关、控制逻辑和保护电路。可以用于多种开关稳压应用(例如:副边反...
开关电源芯片是开关电源的核心部件,它们决定了开关电源的性能和特点。在选择开关电源芯片时,需要考虑输入电压、输出电压、输出功率、转换效率、工作频率、封装形...
FP7126双路调光调色IC 一颗芯片切多路 单节锂电池降压恒流 LED驱动电源芯片
远翔DC-DC降压恒流LED双路调光IC FP7126特点 远翔DC-DC降压恒流LED调光IC FP7126是一款高性能的LED驱动芯片,专为舞台灯等...
单节锂电池降压恒流芯片 FP7130 LED驱动电源芯片 宽电压支持范围 DC65V
宽电压范围支持 :可以满足不同电压等级的磁吸灯台灯需求。通过调节电源电压或电流,可以轻松地控制灯光的亮度,实现精细调节。 FP7130是一款专为LED恒...
芯茂微【LPKSF001】24V 2A适配器充电器电源芯片分析报告
深圳市三佛科技有限公司分享LPKSF001电源Demo评估测试报告:本测试报告依照《家电24V-2A技术规格书》对电源的输入特性、输出特性、保护特性、E...
东芝公司立志于2030年前在全球电源芯片市场中占据至少两位数的市场份额,以此扭转其相较于竞争对手的落后局面。东芝电子设备及存储业务总经理Noriyasu...
解决方案丨PPEC inside车载逆变器,车载高能耗设备需求的理想之选
车载逆变器作为现代汽车电子设备的重要组成部分,通过将直流电转换为交流电,使得车辆能够在行驶中供电家用设备。不仅便利了移动办公,也为户外活动和应急供电提供...
ETA9742 3A充电 2.4A放电 充放电同口 三合一移动电源芯片
ETA9742是一款高效能的开关锂离子电池充电器,支持3A充电电流和5V/2.4A升压输出。其独特的控制方案消除电流感应电阻,提升效率,降低成本。适用...
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |