完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 神经网络
神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
文章:3623个 浏览:100899次 帖子:191个
无残差连接或归一化层,也能成功训练深度Transformer
最近,使用信号传播原则来训练更深度的 DNN 并且残差架构中没有残差连接和 / 或归一化层的参与,成为了社区感兴趣的领域。原因有两个:首先验证了残差架构...
2022-12-12 标签:神经网络Transformerdnn 758 0
无残差连接或归一化层,也能成功训练深度transformer
残差架构是最流行和成功的,最初是在卷积神经网络(CNN)的背景下开发的,后来自注意力网络中产生了无处不在的 transformer 架构。残差架构之所以...
2022-12-12 标签:神经网络Transformerdnn 771 0
1、摘要 在本文中,作者在其原有工作OverlapTransformer (OT)的基础上,提出了一种用于自动驾驶的时空融合激光雷达地点识别算法S...
我们先简单了解一下现在热门的图神经网络 (GNN),这已经成为图数据挖掘的一种主导且强大的工具。与图像数据的 CNN 相似,GNN 是一种神经网络,旨在...
首个在ImageNet上精度超过80%的二值神经网络BNext问世
举个例子,Meta 推荐系统模型 DLRM 使用 32-bit 浮点数来储存权重和激活参数,它的模型大小约为 2.2GB。而一个少量精度下降 (<...
激活函数对于人工神经网络模型去学习、理解非常复杂和非线性的函数来说具有十分重要的作用。首先对于y=ax+b这样的函数,当x的输入很大时,y的输出也是无限...
数据的数量和变化对于大多数 ML 模型(例如深度学习神经网络模型)的性能非常重要。因此,神经网络模型的训练需要一个非常大的数据集。只有它才能达到生产...
机器学习是一种强大的技术,它通过开发算法从其经验中学习和改进。算法是计算、访问和处理输入数据并预测结果的程序。机器学习模型旨在计算复杂的计算和学习模...
训练深度神经网络(DNNs)往往需要大量的训练数据,这些数据有时可能由不可信的第三方来源所提供。这些不可信的数据可能会对模型的训练带来严重的安全威胁。
法国洛林大学的研究人员开发了一种“Damage Reflex”系统(损伤反射,又名 D-Reflex),当机器人的一条腿断了时,人形 TALOS 机器人...
当推理引擎的性能出现时,供应商会抛出基准测试,引用TOPS(Tera-Operations/second)性能和TOPS/Watt等内容。研究这些数...
1. 通过神经网络(NN)自动生成标注的「自监督学习」:至少可以追溯到我1990-91年的工作。 (I) 通过预测编码在一个循环神经网络(RNN)中...
汇编。(主要是现在并没有官方支持汇编的操作,目前的汇编器几乎都是逆向的产物,不是很稳定。同时汇编带来的好处如消除寄存器的 bank conflict n...
龙架构向量创新赋能AI图像识别计算,促进NCNN神经网络前向计算框架性能翻倍
近期,经过龙芯中科与NCNN社区的共同努力,在NCNN中使用龙架构(LoongArch)向量优化实现了大部分算子,得益于龙架构向量的高效实现,优化后NC...
大多数用于创建物联网(IoT)的设备都是用小电池工作的。由于当前消费电子的动态性,测量这些物联网设备的能耗是一项艰巨的任务。开发人员经常需要使用多种仪器...
数据增强(DA)是训练先进的AI算法模型的必要技术,不过并不是所有的数据增强都能提升模型精度,在今天的分享中,从数据增强的角度,对于多种增强方式的效果进...
传统的水果新鲜度预测和建模严重依赖各种理化指标(如失水率、pH值、VC含量,简称QCI)和经典动力学方法,面临耗时、费力、破坏性大、预测精度低的困境。当...
扩大模型的规模是提高特征表示质量的重要策略,在计算机视觉领域,模型参数量的扩大不仅能够有效加强深度模型的表征学习能力,而且能够实现从海量数据中进行学习和...
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |