完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 运放电路
运放电路能对信号进行数学运算的放大电路。它曾是模拟计算机的基础部件,因而得名。采用集成电路工艺制做的运算放大器,除保持了原有的很高的增益和输入阻抗的特点之外,还具有精巧、廉价和可灵活使用等优点,因而在有源滤波器、开关电容电路、数-模和模-数转换器、直流信号放大、波形的产生和变换,以及信号处理等方面得到十分广泛的应用。
运放电路能对信号进行数学运算的放大电路。它曾是模拟计算机的基础部件,因而得名。采用集成电路工艺制做的运算放大器,除保持了原有的很高的增益和输入阻抗的特点之外,还具有精巧、廉价和可灵活使用等优点,因而在有源滤波器、开关电容电路、数-模和模-数转换器、直流信号放大、波形的产生和变换,以及信号处理等方面得到十分广泛的应用。
直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。因为被放大的信号多数是变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。
运放电路能对信号进行数学运算的放大电路。它曾是模拟计算机的基础部件,因而得名。采用集成电路工艺制做的运算放大器,除保持了原有的很高的增益和输入阻抗的特点之外,还具有精巧、廉价和可灵活使用等优点,因而在有源滤波器、开关电容电路、数-模和模-数转换器、直流信号放大、波形的产生和变换,以及信号处理等方面得到十分广泛的应用。
直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。因为被放大的信号多数是变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。
运算放大器基本电路及原理
图六电路中,由虚短知,反向输入端的电压与同向端相等,由虚断知,通过R1的电流与通过C1的电流相等。通过R1的电流i=V1/R1 通过C1的电流i=C*dUc/dt=-C*dVout/dt 所以Vout=((-1/(R1*C1))∫V1dt 输出电压与输入电压对时间的积分成正比,这就是传说中的积分电路了。若V1为恒定电压U,则上式变换为Vout = -U*t/(R1*C1) t 是时间,则Vout 输出电压是一条从0至负电源电压按时间变化的直线。
图七中由虚断知,通过电容C1和电阻R2的电流是相等的,由虚短知,运放同向端与反向端电压是相等的。则: Vout = -i * R2 = -(R2*C1)dV1/dt 这是一个微分电路。如果V1是一个突然加入的直流电压,则输出Vout 对应一个方向与V1相反的脉冲。
图八。由虚短知Vx = V1 ……a Vy = V2 ……b 由虚断知,运放输入端没有电流流过,则R1、R2、R3可视为串联,通过每一个电阻的电流是相同的, 电流I=(Vx-Vy)/R2 ……c 则:
Vo1-Vo2=I*(R1+R2+R3) = (Vx-Vy)(R1+R2+R3)/R2 ……d 由虚断知,流过R6与流过R7的电流相等,若R6=R7, 则Vw = Vo2/2 ……e 同理若R4=R5,则Vout – Vu = Vu – Vo1,故
Vu = (Vout+Vo1)/2 ……f 由虚短知,Vu = Vw ……g 由efg 得Vout = Vo2 – Vo1 ……h
由dh 得Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中(R1+R2+R3)/R2是定值,此值确定了差值(Vy–Vx)的放大倍数。这个电路就是传说中的差分放大电路了。
分析一个大家接触得较多的电路。很多控制器接受来自各种检测仪表的0~20mA 或4~20mA 电流,电路将此电流转换成电压后再送ADC 转换成数字信号,图九就是这样一个典型电路。如图4~20mA 电流流过采样100Ω电阻R1,在R1上会产生0.4~2V 的电压差。由虚断知,运放输入端没有电流流过,则流过R3和R5的电流相等,流过R2和R4的电流相等。
故: (V2-Vy)/R3= Vy/R5 ……a (V1-Vx)/R2 = (Vx-Vout)/R4 ……b 由虚短知: Vx = Vy ……c 电流从0~20mA变化, 则V1 = V2 + (0.4~2) ……d 由cd 式代入b 式得(V2 + (0.4~2)-Vy)/R2 =(Vy-Vout)/R4 ……e 如果R3=R2,R4=R5,则由e-a 得Vout = -(0.4~2)R4/R2 ……f 图九中R4/R2=22k/10k=2.2,则f 式Vout = -(0.88~4.4)V,即是说,将4~20mA 电流转换成了-0.88~ -4.4V 电压,此电压可以送ADC 去处理。
电流可以转换成电压,电压也可以转换成电流。图十就是这样一个电路。上图的负反馈没有通过电阻直接反馈,而是串联了三极管Q1的发射结,大家可不要以为是一个比较器就是了。只要是放大电路,虚短虚断的规律仍然是符合的!由虚断知,运放输入端没有电流流过,
则(Vi – V1)/R2 = (V1 – V4)/R6 ……a
同理(V3 – V2)/R5 = V2/R4……b
由虚短知V1 = V2……c
如果R2=R6,R4=R5,则由abc 式得V3-V4=Vi
上式说明R7两端的电压和输入电压Vi 相等,则通过R7的电流I=Vi/R7,如果负载
RL《《100KΩ,则通过Rl 和通过R7的电流基本相同。
来一个复杂的,呵呵!图十一是一个三线制PT100前置放大电路。PT100传感器引出三根材质、线径、长度完全相同的线,接法如图所示。有2V 的电压加在由R14、R20、R15、Z1、PT100及其线电阻组成的桥电路上。Z1、Z2、Z3、D11、D12、D83及各电容在电路中起滤波和保护作用,静态分析时可不予理会,Z1、Z2、Z3可视为短路,D11、D12、D83及各电容可视为开路。
由电阻分压知, V3=2*R20/(R14+20)=200/1100=2/11 ……a 由虚短知,U8B 第6、7脚电压和第5脚电压相等V4=V3 ……b 由虚断知,U8A 第2脚没有电流流过,则流过R18和R19上的电流相等。
(V2-V4)/R19=(V5-V2)/R18 ……c 由虚断知,U8A 第3脚没有电流流过,V1=V7 ……d 在桥电路中R15和Z1、PT100及线电阻串联,PT100与线电阻串联分得的电压通过电阻R17加至U8A 的第3脚,
V7=2*(Rx+2R0)/(R15+Rx+2R0) …。.e 由虚短知,U8A 第3脚和第2脚电压相等,
V1=V2 ……f 由abcdef 得, (V5-V7)/100=(V7-V3)/2.2 化简得
V5=(102.2*V7-100V3)/2.2 即V5=204.4(Rx+2R0)/(1000+Rx+2R0) – 200/11 ……g 上式输出电压V5是Rx 的函数
我们再看线电阻的影响。Pt100最下端线电阻上产生的电压降经过中
间的线电阻、Z2、R22,加至U8C 的第10脚,由虚断知, V5=V8=V9=2*R0/(R15+Rx+2R0) ……a
(V6-V10)/R25=V10/R26 ……b 由虚短知, V10=V5 ……c 由式abc 得V6=(102.2/2.2)V5=204.4R0/[2.2(1000+Rx+2R0)] ……h 由式gh 组成的方程组知,如果测
出V5、V6的值,就可算出Rx 及R0,知道Rx,查pt100分度表就知道温度的大小了。
运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,...
2018-06-05 标签:运放电路 12.9万 4
运算放大器组成的电路五花八门,分析它的工作原理时抓住核心,“虚短”和“虚断”,要把它运用得出神入化,就要有较深厚的功底了。
概述LM358内部包括有2个独立的、高增益、内部频率补偿的双运算放大器, 适合于电源电压范围很宽的单电源使用
目前市场运放种类繁多,面对不同的使用条件和环境,是否都能选择一样的运放呢?没关系,这是很多电子工程师都会困惑的问题,接下来为你揭开运放选型的神秘面纱。 ...
运放(operatiONal amplifier)能对信号进行数学运算的放大电路。它曾是模拟计算机的基础部件,采用集成电路工艺制做的运算放大器,除保持了...
2017-05-16 标签:运放电路 5.9万 0
6种简单电路图之LM358应用电路图(直流耦合低通RC有源滤波器 低漂移峰值检测器)
LM358电路图的应用方案你知道吗?这里给大家分享6种简单电路图之LM358应用电路图(直流耦合低通RC有源滤波器 低漂移峰值检测器等等)LM358 内...
运放电路分析基础 基于今天回家就停电,到晚上22点30分才来电,媳妇又回家了,23:25才入手电脑,因此做一些准备的知识作为今天的内容。
2009-11-21 标签:运放电路 4.2万 0
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |