完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > ADC0809
ADC0809是美国国家半导体公司生产的CMOS工艺8通道,8位逐次逼近式A/D模数转换器。其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。
ADC0809是美国国家半导体公司生产的CMOS工艺8通道,8位逐次逼近式A/D模数转换器。其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。目前仅在单片机初学应用设计中较为常见。
内部结构
ADC0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型A/D转换器、逐次逼近寄存器、逻辑控制和定时电路组成。
ADC0809是美国国家半导体公司生产的CMOS工艺8通道,8位逐次逼近式A/D模数转换器。其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。目前仅在单片机初学应用设计中较为常见。
内部结构
ADC0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型A/D转换器、逐次逼近寄存器、逻辑控制和定时电路组成。
外部特性(引脚功能)
ADC0809芯片有28条引脚,采用双列直插式封装,如图所示。
下面说明各引脚功能:
IN0~IN7:8路模拟量输入端。
2-1~2-8:8位数字量输出端。
ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。
ALE:地址锁存允许信号,输入端,产生一个正脉冲以锁存地址。
START: A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。
EOC: A/D转换结束信号,输出端,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。
OE:数据输出允许信号,输入端,高电平有效。当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。
CLK:时钟脉冲输入端。要求时钟频率不高于640KHz。
REF(+)、REF(-):基准电压。
Vcc:电源,单一+5V。
GND:地。
工作过程
首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位。下降沿启动 A/D转换,之后EOC输出信号变低,指示转换正在进行。直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输入高电平 时,输出三态门打开,转换结果的数字量输出到数据总线上。
转换数据的传送 A/D转换后得到的数据应及时传送给单片机进行处理。数据传送的关键问题是如何确认A/D转换的完成,因为只有确认完成后,才能进行传送。为此可采用下述三种方式。
(1)定时传送方式
对于一种A/D转换器来说,转换时间作为一项技术指标是已知的和固定的。例如ADC0809转换时间为128μs,相当于6MHz的MCS-51单片机共64个机器周期。可据此设计一个延时子程序,A/D转换启动后即调用此子程序,延迟时间一到,转换肯定已经完成了,接着就可进行数据传送。
(2)查询方式
A/D转换芯片有表明转换完成的状态信号,例如ADC0809的EOC端。因此可以用查询方式,测试EOC的状态,即可确认转换是否完成,并接着进行数据传送。
(3)中断方式
把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。
不管使用上述哪种方式,只要一旦确定转换完成,即可通过指令进行数据传送。首先送出口地址并以信号有效时,OE信号即有效,把转换数据送上数据总线,供单片机接受。
常见用途
ADC0809与MCS-51单片机的连接主要涉及两个问题。一是8路模拟信号通道的选择,二是A/D转换完成后转换数据的传送。转换数据的传送有定时传送方式、查询方式、中断方式这三种方式。A、B、C的值与被选择的通道之间的关系
ADC0809引脚图与接口电路
A/D转换器芯片ADC0809简介 8路模拟信号的分时采集,片内有8路模拟选通开关,以及相应的通道抵制锁存用译码电路,其转换时间为100μs左右。
图9.8 ADC0809引脚图
1. ADC0809的内部结构
ADC0809的内部逻辑结构图如图9-7所示。
图9.7 ADC0809内部逻辑结构
图中多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用一个A/D转换器进行转换,这是一种经济的多路数据采集方法。地址锁存与译码电路完成对A、B、C 3个地址位进行锁存和译码,其译码输出用于通道选择,其转换结果通过三态输出锁存器存放、输出,因此可以直接与系统数据总线相连,表9-1为通道选择表。
表9-1 通道选择表
2.信号引脚
ADC0809芯片为28引脚为双列直插式封装,其引脚排列见图9.8。
对ADC0809主要信号引脚的功能说明如下:
IN7~IN0——模拟量输入通道
ALE——地址锁存允许信号。对应ALE上跳沿,A、B、C地址状态送入地址锁存器中。
START——转换启动信号。START上升沿时,复位ADC0809;START下降沿时启动芯片,开始进行A/D转换;在A/D转换期间,START应保持 低电平。本信号有时简写为ST.
A、B、C——地址线。 通道端口选择线,A为低地址,C为高地址,引脚图中为ADDA,ADDB和ADDC。其地址状态与通道对应关系见表9-1。
CLK——时钟信号。ADC0809的内部没有时钟电路,所需时钟信号由外界提供,因此有时钟信号引脚。通常使用频率为500KHz的时钟信号
EOC——转换结束信号。EOC=0,正在进行转换;EOC=1,转换结束。使用中该状态信号即可作为查询的状态标志,又可作为中断请求信号使用。
D7~D0——数据输出线。为三态缓冲输出形式,可以和单片机的数据线直接相连。D0为最低位,D7为最高
OE——输出允许信号。用于控制三态输出锁存器向单片机输出转换得到的数据。OE=0,输出数据线呈高阻;OE=1,输出转换得到的数据。
Vcc—— +5V电源。
Vref——参考电源参考电压用来与输入的模拟信号进行比较,作为逐次逼近的基准。其典型值为+5V(Vref(+)=+5V, Vref(-)=-5V)。
9.2.2 MCS-51单片机与ADC0809的接口
ADC0809与MCS-51单片机的连接如图9.10所示。
电路连接主要涉及两个问题。一是8路模拟信号通道的选择,二是A/D转换完成后转换数据的传送。
1. 8路模拟通道选择
图9.10 ADC0809与MCS-51的连接
如图9.11所示模拟通道选择信号A、B、C分别接最低三位地址A0、A1、A2即(P0.0、P0.1、P0.2),而地址锁存允许信号ALE由P2.0控制,则8路模拟通道的地址为0FEF8H~0FEFFH.此外,通道地址选择以作写选通信号,这一部分电路连接如图9.12所示。
图9.11 ADC0809的部分信号连接
图9.12 信号的时间配合
从图中可以看到,把ALE信号与START信号接在一起了,这样连接使得在信号的前沿写入(锁存)通道地址,紧接着在其后沿就启动转换。图9.19是有关信号的时间配合示意图。
启动A/D转换只需要一条MOVX指令。在此之前,要将P2.0清零并将最低三位与所选择的通道好像对应的口地址送入数据指针DPTR中。例如要选择IN0通道时,可采用如下两条指令,即可启动A/D转换:
MOV DPTR , #FE00H ;送入0809的口地址
MOVX @DPTR , A ;启动A/D转换(IN0)
注意:此处的A与A/D转换无关,可为任意值。
2. 转换数据的传送
A/D转换后得到的数据应及时传送给单片机进行处理。数据传送的关键问题是如何确认A/D转换的完成,因为只有确认完成后,才能进行传送。为此可采用下述三种方式。
(1)定时传送方式
对于一种A/D转换其来说,转换时间作为一项技术指标是已知的和固定的。例如ADC0809转换时间为128μs,相当于6MHz的MCS-51单片机共64个机器周期。可据此设计一个延时子程序,A/D转换启动后即调用此子程序,延迟时间一到,转换肯定已经完成了,接着就可进行数据传送。
(2)查询方式
A/D转换芯片由表明转换完成的状态信号,例如ADC0809的EOC端。因此可以用查询方式,测试EOC的状态,即可却只转换是否完成,并接着进行数据传送。
(3)中断方式
把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。
不管使用上述那种方式,只要一旦确定转换完成,即可通过指令进行数据传送。首先送出口地址并以信号有效时,OE信号即有效,把转换数据送上数据总线,供单片机接受。
不管使用上述那种方式,只要一旦确认转换结束,便可通过指令进行数据传送。所用的指令为MOVX 读指令,仍以图9-17所示为例,则有
MOV DPTR , #FE00H
MOVX A , @DPTR
该指令在送出有效口地址的同时,发出
有效信号,使0809的输出允许信号OE有
效,从而打开三态门输出,是转换后的数据通过数据总线送入A累加器中。
这里需要说明的示,ADC0809的三个地址端A、B、C即可如前所述与地址线相连,也可与数据线相连,例如与D0~D2相连。这是启动A/D转换的指令与上述类似,只不过A的内容不能为任意数,而必须和所选输入通道号IN0~IN7相一致。例如当A、B、C分别与D0、D1、D2相连时,启动IN7的A/D转换指令如下:
MOV DPTR, #FE00H ;送入0809的口地址
MOV A ,#07H ;D2D1D0=111选择IN7通道
MOVX @DPTR, A ;启动A/D转换
9.2.3 A/D转换应用举例
设有一个8路模拟量输入的巡回监测系统,采样数据依次存放在外部RAM 0A0H~0A7H单元中,按图9.10所示的接口电路,ADC0809的8个通道地址为0FEF8H~0FEFFH.其数据采样的初始化程序和中断服务程序(假定只采样一次)如下:
初始化程序:
MOVR0, #0A0H;数据存储区首地址
MOVR2, #08H;8路计数器
SETBIT1;边沿触发方式
SETBEA;中断允许
SETBEX1;允许外部中断1中断
MOVDPTR, #0FEF8H;D/A转换器地址
LOOP:MOVX@DPTR, A;启动A/D转换
HERE:SJMPHERE;等待中断
中断服务程序:
DJNZR2, ADEND
MOVXA, @DPTR;数据采样
MOVX@R0, A;存数
INCDPTR;指向下一模拟通道
INCR0;指向数据存储器下一单元
MOVX@DPTR, A
ADEND:RETI
ADC0809是一款8位逐次逼近型模数转换器(ADC),广泛应用于需要将模拟信号转换为数字信号的场合。它能够将0到5伏的模拟电压信号转换为8位二进制数字...
adc0809输入电压范围 adc0809和adc0808区别
ADC0809和ADC0808都是8位模数转换器(ADC),它们可以将模拟信号转换为数字信号。这两种芯片广泛应用于各种电子项目中,如数据采集、传感器接口...
ADC0809是一款8位逐次逼近型模拟/数字转换器(ADC),广泛应用于各种电子系统中,如数据采集、信号处理等。在Proteus软件中,用户可以通过仿真...
ADC0809是一款8位的A/D转换器,它具有8个通道,可以用于将模拟信号转换为数字信号。如果您想改变通道,以下是一些步骤和操作说明。 步骤1:电源连接...
A/D转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,其任务是将连续变化的模拟信号转换为数字信号,以便计算机等数字系统进行处理、存储、控制和显示...
2021-02-14 标签:ADC0809 1.6万 0
使用单片机AT89S51和ADC0809设计一个数字电压表的资料概述
利用单片机AT89S51与ADC0809设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码显示,但要求使用的元器件数目最少。
本文首先阐述了adc0832的概念,其次阐述了adc0832的特点,最后介绍了adc0832和adc0809区别。
A/D转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机等数字系统进行处理、存储、控制和显...
2017-11-22 标签:adc0809 8804 0
A/D转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机等数字系统进行处理、存储、控制和显...
2017-11-22 标签:adc0809 1.6万 0
A/D转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机等数字系统进行处理、存储、控制和显...
2017-11-22 标签:adc0809 3888 0
A/D转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机等数字系统进行处理、存储、控制和显...
2017-11-22 标签:adc0809 1445 0
A/D转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机等数字系统进行处理、存储、控制和显...
2017-11-22 标签:adc0809 9734 0
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |