完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > PN结
采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结。
采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结(英语:PN junction)。PN结具有单向导电性,是电子技术中许多器件所利用的特性,例如半导体二极管、双极性晶体管的物质基础。
采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结(英语:PN junction)。PN结具有单向导电性,是电子技术中许多器件所利用的特性,例如半导体二极管、双极性晶体管的物质基础。
原理
杂质半导体N型半导体(N为Negative的字头,由于电子带负电荷而得此名):掺入少量杂质磷元素(或锑元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,磷原子外层的五个外层电子的其中四个与周围的半导体原子形成共价键,多出的一个电子几乎不受束缚,较为容易地成为自由电子。于是,N型半导体就成为了含电子浓度较高的半导体,其导电性主要是因为自由电子导电。[1] P型半导体(P为Positive的字头,由于空穴带正电而得此名):掺入少量杂质硼元素(或铟元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,硼原子外层的三个外层电子与周围的半导体原子形成共价键的时候,会产生一个“空穴”,这个空穴可能吸引束缚电子来“填充”,使得硼原子成为带负电的离子。这样,这类半导体由于含有较高浓度的“空穴”(“相当于”正电荷),成为能够导电的物质。[2]
PN结的形成PN结是由一个N型掺杂区和一个P型掺杂区紧密接触所构成的,其接触界面称为冶金结界面。[3] 在一块完整的硅片上,用不同的掺杂工艺使其一边形成N型半导体,另一边形成P型半导体,我们称两种半导体的交界面附近的区域为PN结。在P型半导体和N型半导体结合后,由于N型区内自由电子为多子空穴几乎为零称为少子,而P型区内空穴为多子自由电子为少子,在它们的交界处就出现了电子和空穴的浓度差。由于自由电子和空穴浓度差的原因,有一些电子从N型区向P型区扩散,也有一些空穴要从P型区向N型区扩散。它们扩散的结果就使P区一边失去空穴,留下了带负电的杂质离子,N区一边失去电子,留下了带正电的杂质离子。开路中半导体中的离子不能任意移动,因此不参与导电。这些不能移动的带电粒子在P和N区交界面附近,形成了一个空间电荷区,空间电荷区的薄厚和掺杂物浓度有关。在空间电荷区形成后,由于正负电荷之间的相互作用,在空间电荷区形成了内电场,其方向是从带正电的N区指向带负电的P区。显然,这个电场的方向与载流子扩散运动的方向相反,阻止扩散。另一方面,这个电场将使N区的少数载流子空穴向P区漂移,使P区的少数载流子电子向N区漂移,漂移运动的方向正好与扩散运动的方向相反。从N区漂移到P区的空穴补充了原来交界面上P区所失去的空穴,从P区漂移到N区的电子补充了原来交界面上N区所失去的电子,这就使空间电荷减少,内电场减弱。因此,漂移运动的结果是使空间电荷区变窄,扩散运动加强。最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。在空间电荷区,由于缺少多子,所以也称耗尽层。
制造工艺
PN结是构成各种半导体器件的基础。制造PN结的方法有:制造异质结通常采用外延生长法。(1)外延方法:突变PN结;(2)扩散方法:缓变PN结;
(3)离子注入方法:介于突变结与缓变结之间;
PN 结的击穿机理
PN 结构成了几乎所有半导体功率器件的基础,目前常用的半导体功率器件如DMOS,IGBT,SCR 等的反向阻断能力都直接取决于 PN 结的击穿电压,因此,PN 结反向阻断特性的优劣直接决定了半导体功率器件的可靠性及适用范围。在 PN结两边掺杂浓度为固定值的条件下,一般认为除 super junction 之外平行平面结的击穿电压在所有平面结中具有最高的击穿电压。实际的功率半导体器件的制造过程一般会在 PN 结的边缘引入球面或柱面边界,该边界位置的击穿电压低于平行平面结的击穿电压,使功率半导体器件的击穿电压降低。由此产生了一系列的结终端技术来消除或减弱球面结或柱面结的曲率效应,使实际制造出的 PN 结的击穿电压接近或等于理想的平行平面结击穿电压。
当 PN 结的反向偏压较高时,会发生由于碰撞电离引发的电击穿,即雪崩击穿。存在于半导体晶体中的自由载流子在耗尽区内建电场的作用下被加速其能量不断增加,直到与半导体晶格发生碰撞,碰撞过程释放的能量可能使价键断开产生新的电子空穴对。新的电子空穴对又分别被加速与晶格发生碰撞,如果平均每个电子(或空穴)在经过耗尽区的过程中可以产生大于 1 对的电子空穴对,那么该过程可以不断被加强,最终达到耗尽区载流子数目激增,PN 结发生雪崩击穿。
半导体的导电特性
半导体以其导电性能介乎于导体和绝缘体之间而得名。如硅、锗、硒以及大多数金属氧化物和硫化物都是半导体。
金属导体依靠自由电子导电。绝缘体原子最外层的电子被原子核束缚得很紧,所以绝缘体中自由电子极少,不易导电。而半导体原子最外层的电子处于半自由状态。以常用的半导体材料硅原子结构为例,它有四个价电子,完全纯净的硅晶体结构中,每一个原子与相邻的四个原子结合,每一个原子的一个价电子与另一个原子的一个价电子组成一个电子对,构成共价键结构,如右图所示。半导体一般都具有晶体结构,故半导体又称为单晶体。
共价键中的价电子不像绝缘体原子外层的电子被束缚得那么紧,在受到热的作用或受到光照射时,热能和光能转化为电子的动能,原子最外层的价电子便很容易挣脱原子核的束缚,形成自由电子,此时在原子共价键结构中,相应出现了一个电子空位,称为空穴,由于电子带负电荷而原子又是中性的,因此空穴可认为是带正电荷。具有空穴的原子又可吸引邻近原子中的价电子来填补其空穴,从而形成电子运动。这时空穴也从某一个原子内移动到了另一个原子内,形成空穴运动。这样在一定条件下,半导体中出现了两种带电运动,一种是带负电荷的自由电子运动;另一种便是带正电荷的空穴运动。在外电场的作用下,电子向电源正极定向运动,空穴向电源负极定向运动,于是电路中便形成电流。
半导体导电的特点,就是同时存在电子导电和空穴导电,所以自由电子和空穴都称为载流子。纯净半导体中载流子总是成对出现,并不断复合,在一定条件下达到动态平衡,使半导体中载流子的数量维持恒定。当条件改变后,如温度升高或光照加强,载流子数量又会增多,使半导体的导电性能增强,故温度对半导体导电性能影响很大。
纯净半导体一般导电能力是较差的,而在其中加入某种杂质后,导电能力即可大大增强,其原因同样与其共价键结构有关。
N型和P型半导体
在纯净的半导体中,掺入极微量有用的杂质,杂质不同,其增加的导电载流子的类型也不同,可分为两大类,如在硅单晶体中掺入五价元素磷,磷原子外层有五个价电子,其中四个价电子与硅原子中的四个价电子形成共价键后,多出的一个电子便很容易挣脱原子核的束缚而成为自由电子,这样掺磷后的半导体中自由电子的数量大大增加,因而加强了原纯净半导体的导电能力。掺入五价元素的半导体,自由电子是导电的主要载流子,称多数载流子,而原半导体中的空穴则称少数载流子,这种半导体由于电子带负电,故称电子型半导体或N型半导体,如下图a所示。
若在硅单晶体中掺入三价元素硼,硼原子外层只有三个价电子,与硅原子中的价电子形成共价键时,将出现一个空穴,与N型半导体相比,这类半导体主要是空穴导电,即空穴是多数载流子,自由电子是少数载流子,由于空穴被认为带正电,故称空穴型半导体或P型半导体,如上图b所示。
在N型半导体中,摻入五价元素越多,自由电子数量越多,导电性能越好。同理在P型半导体中,掺入三价元素越多,空穴数量越多,导电性能也越好。在制造时,可用掺杂的多少来控制多数载流子的浓度。而在使用中因出现温度的升高或光照的增多,P型或N型半导体中少数载流子的浓度也会出现急剧增加的现象。
N型半导体和P型半导体,虽然都有一种多数载流子,但整个半导体仍是电中性的。
PN结的形成
将下图a的P型半导体和N型半导体采用一定的工艺措施紧密地结合在一起,由于N区电子浓度远大于P区,P区的空穴浓度远大于N区,因此N区的电子要穿过交界面向P区扩散,P区的空穴也要穿过交界面向N区扩散。扩散的结果,在交界面形成一个薄层区,在这薄层区内,N区的电子已跑到P区,N区留下了带正电的原子,形成N区带正电;P区的空穴已被电子填充,P区留下了带负电的原子,形成P区带负电。这薄层称为空间电荷区,如下图b所示。
这薄层的两边类似已充电的电容器,形成由N→P的内电场。空间电荷区内基本上已没有载流子,故又称为耗尽层,或称PN结,它具有很高的电阻率。显然这个内电场形成后将阻碍多数载流子的扩散运动;同时,内电场又使P区少数载流子——电子向N运动;使N区少数载流子—— 空穴向P区运动。这种少数载流子在内电场作用下的运动称为漂移运动。
扩散运动和漂移运动是同时存在的一对矛盾,开始形成空间电荷区时,多数载流子的扩散是矛盾的主导,随着扩散运动的进行,空间电荷区即PN结不断增宽,内电场增强,此时扩散运动减弱,而漂移运动越来越强,在一定温度时,最终扩散、漂移运动达到动平衡,PN结处于相对稳定状态,PN结之间再没有定向电流。
PN结的单向导电原理
外加正向电压:PN结导通(导电):如下图a所示,将电源E串联电阻R后正极接于P区,负极接于N区,这时称PN结外加正向电压。在正向电压作用下,PN结中的外电场和内电场方向相反,扩散运动和漂移运动的平衡被破坏,内电场被削弱,使空间电荷区变窄,多数载流子的扩散运动大大地超过了少数载流子的漂移运动,多数载流子很容易越过PN结,形成较大的正向电流,PN结呈现的电阻很小,因而处于导通状态。串联电阻是为了防止电流过大而可能烧毁PN结。
外加反向电压,PN结截止(不导电):上图b中,将电源E的正极接于N区,负极接于P区,PN结外加反向电压,或称PN结反向接法。此时外电场和内电场方向一致,内电场增强,使空间电荷区加宽,对多数载流子扩散运动的阻碍作用加强,多数载流子几乎不运动,但是,增强了的内电场有利于少数载流子的漂移运动,由于少数载流子的数量很少,只形成微小的反向电流,PN结呈现的反向电阻很大,因此处于截止状态。反向电流对温度非常敏感,温度每升高8~10℃,少数载流子形成的反向电流将增大1倍。
三极管击穿是电子学领域中的一个重要概念,它涉及到三极管的工作特性、失效机制以及电路保护等多个方面。本文将从三极管击穿的定义、类型、原因、危害、预防措施以...
PN结是由P型半导体和N型半导体紧密接触后形成的。在P型半导体中,多数载流子是空穴,少数载流子是电子;而在N型半导体中,多数载流子是电子,少数载流子是空...
晶闸管(Thyristor)是一种四层三端半导体器件,也被称为硅控制整流器(SCR)。它具有单向导电性,可以通过门极(Gate)控制其导通和关断。晶闸管...
变容二极管(Variable Capacitance Diode,简称Varactor Diode),也被称为调谐二极管或慢波二极管,是一种具有可变电容...
半导体PN结的形成原理及其主要特性是半导体物理学中的重要内容,对于理解半导体器件的工作原理和应用具有重要意义。以下是对半导体PN结形成原理和主要特性的详细解析。
光敏二极管,又称光电二极管,是一种能够将光信号转化为电信号的半导体器件。其核心部分是一个具有光敏特性的PN结,这一结构使得光敏二极管对光的变化极为敏感,...
点接触二极管是一种半导体器件,它在电子学和电力电子学中有着广泛的应用。这种二极管的特点主要体现在其结构、工作原理、电气特性以及应用领域等方面。 点接触二...
面接触型二极管的工作频率 相对较低 。这主要是由于其PN结的接触面积大,导致结电容也相对较大。在高频电路中,结电容的存在会限制二极管的工作频率,因为电容...
面接触二极管在电子学中扮演着重要角色,而关于其“基座”的提法,实际上可能是在类比或隐喻地描述其结构或功能上的某种支撑作用。然而,在二极管的标准术语中,并...
双极型晶体管(BJT)是电子电路中的核心组件之一,其性能直接影响电路的稳定性和可靠性。BJT的故障可能由多种原因引起,包括制造缺陷、环境因素、电路设计不...
可控硅与其他半导体器件的对比如下: 一、可控硅与IGBT的对比 结构 : 可控硅:一种由NPNPN结构组成的多层PN结的器件,通常由四个电极组成,即门极...
二极管的基本原理 二极管由一个P型半导体和一个N型半导体组成,它们相互接触形成一个PN结。在正向偏置(P型端接正,N型端接负)时,PN结导电,允许电流通...
pn结反向饱和电流到底是怎么形成的 它的大小跟哪些因素有关?
pn结反向饱和电流到底是怎么形成的 它的大小跟哪些因素有关? PN结反向饱和电流是指当PN结处于反向偏置状态时,在一定条件下,流过PN结的电流达到一个稳...
IGBT应用中有哪些短路类型? IGBT是一种主要用于功率电子应用的半导体器件。在实际应用中,IGBT可能会遭遇多种短路类型。下面,我将详细介绍IGBT...
何谓PN结的击穿特性?雪崩击穿和齐纳击穿各有何特点? PN结的击穿特性是指当在PN结上施加的电压超过一定的值时,PN结将发生击穿现象,电流迅速增大,导致...
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |