0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

标签 > sic

sic

sic

+关注29人关注

金刚砂又名碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。

文章:2397 浏览:62392 帖子:123

sic技术

用SiC JFET技术彻底改变电路保护

用SiC JFET技术彻底改变电路保护

20世纪中叶,住宅和工业电气系统经历了重大创新。其中最具影响力的进展之一是从传统的可更换保险丝转向微型断路器(MCB)。虽然保险丝提供了基本的保护,但在...

2024-07-24 标签:断路器电路保护SiC 396 0

详解电力电子领域碳化硅(SiC)的热行为

详解电力电子领域碳化硅(SiC)的热行为

碳化硅(SiC)在功率电子学中相比传统的硅工艺技术具有众多优势。它结合了更高的电子迁移率、更宽的带隙和更好的热导率。得益于这些特性,SiC器件相比于同等...

2024-07-19 标签:SiC碳化硅功率电子 2.2万 0

三种功率器件的应用区别

三种功率器件的应用区别

GaN HEMT(氮化镓高电子迁移率晶体管)、Si MOSFET(硅金属氧化物半导体场效应晶体管)和SiC MOSFET(碳化硅金属氧化物半导体场效应晶...

2024-07-18 标签:MOSFET半导体晶体管 4696 0

驱动SiC MOSFET有多容易?

驱动SiC MOSFET有多容易?

得益于宽禁带半导体的材料优势,SiCMOSFET在电力电子行业中的应用越来越广泛。SiCMOSFET很多性能与传统Si基器件不同,对驱动设计也提出了更高...

2024-07-12 标签:MOSFET驱动SiC 217 0

基于安森美碳化硅模块的换电站中充电电路设计

基于安森美碳化硅模块的换电站中充电电路设计

在电动车发展的过程当中,充电和换电是两个同时存在的方案。车载充电OBC可以通过两相或三相电给汽车充电,但其无法满足快充的需求。现在充电桩发展迅速,已经有...

2024-07-08 标签:安森美SiC充电站 464 0

SiC功率器件性能和可靠性的提升

SiC功率器件性能和可靠性的提升

在电力电子领域,碳化硅(SiC)技术对于推动向电动移动性的转变和提高可再生能源系统的效率至关重要。随着市场需求的增加,功率半导体公司面临着迅速扩大生产能...

2024-07-04 标签:功率器件SiC器件 1383 0

AI数据中心电力飙升,安森美高能效MOSFET如何见招拆招?

AI数据中心电力飙升,安森美高能效MOSFET如何见招拆招?

安森美的中低压 T10 PowerTrench MOSFET 采用了新型屏蔽栅极沟槽技术,降低了开关损耗和导通损耗,并进而显著降低了其 Qg,RDS(O...

2024-06-29 标签:MOSFET安森美数据中心 770 0

UPS系统设计方案解读

UPS系统设计方案解读

UPS的应用场景日趋多样化,每个场景都有其独特的需求,对应不同的方案。UPS系统方案指南继续上新,本文将聚焦UPS设计方案展开讲述。

2024-06-26 标签:充电器安森美SiC 684 0

一文了解SiC MOS的应用

一文了解SiC MOS的应用

作为第三代半导体产业发展的重要基础材料,碳化硅MOSFET具有更高的开关频率和使用温度,能够减小电感、电容、滤波器和变压器等组件的尺寸,提高系统电力转换...

2024-06-21 标签:半导体MOSSiC 467 0

用碳化硅(SiC)重新思考软开关效率

用碳化硅(SiC)重新思考软开关效率

从理论上讲,碳化硅(SiC)技术比硅(Si)具有优势,这使得它看起来可以作为电力电子中现有MOSFET的直接替代品。这在一定程度上是正确的,但只要关注该...

2024-06-19 标签:电阻MOSFETSiC 525 0

氧化镓器件,高压电力电子的未来之星

氧化镓器件,高压电力电子的未来之星

超宽带隙(UWBG)半导体相比si和宽带隙材料如SiC和GaN具有更优越的固有材料特性。在不同的UWBG材料中,氧化镓正逐渐展现出其在高压电力电子领域的...

2024-06-18 标签:半导体SiC电力器件 506 0

并行连接的SiC MOSFET可以带来更多电力

并行连接的SiC MOSFET可以带来更多电力

功率器件(如开关、电阻和MOSFET)的并联连接旨在分担功率,使设备能够承受更大的功率。它们可以并联连接,以增加输出电流的容量。由于不受热不稳定性的影响...

2024-06-03 标签:电流MOSFETSiC 727 0

碳化硅(SiC)功率器件的开关性能比较

碳化硅(SiC)功率器件的开关性能比较

过去十年,碳化硅(SiC)功率器件因其在功率转换器中的高功率密度和高效率而备受关注。制造商们已经开始采用碳化硅技术来开发基于各种半导体器件的功率模块,如...

2024-05-30 标签:功率器件SiC碳化硅 581 0

SiC MOSFET:通过波形的线性近似分割来计算损耗的方法

SiC MOSFET:通过波形的线性近似分割来计算损耗的方法

首先,计算开通和关断时间内消耗的功率损耗Pton和Ptoff。波形使用图1中的示例波形。功率损耗使用表1中的近似公式来计算。由于计算公式会因波形的形状而...

2024-05-29 标签:MOSFET导通电阻SiC 1048 0

碳化硅器件的基本特性都有哪些?

碳化硅(SiliconCarbide,SiC)器件作为第三代半导体材料的重要代表,近年来在电子器件领域中备受关注。

2024-05-27 标签:集成电路半导体SiC 1204 0

碳化硅衬底片比较重要的参数有哪些?

碳化硅衬底片比较重要的参数有哪些?

Lattice Parameters:晶格参数。确保衬底的晶格常数与将要生长的外延层相匹配,以减少缺陷和应力。

2024-05-19 标签:半导体SiC碳化硅 823 0

SiC MOSFET实现高频大功率变换——固态变压器应用案例剖析

SiC MOSFET实现高频大功率变换——固态变压器应用案例剖析

在传统的配电网结构中,工频变压器是实现电能分配和电压等级变换的主要电气设备。工频变压器的主要组成部件为铁芯和绕组,常采用油浸式或者干式,具有可靠性高,效...

2024-05-17 标签:变压器MOSFETSiC 1791 0

英飞凌CoolSiC™ MOSFET G2,助力下一代高性能电源系统

英飞凌CoolSiC™ MOSFET G2,助力下一代高性能电源系统

所有现代硅功率器件都基于沟槽技术,并已取代了平面技术,那么碳化硅呢?就碳化硅而言,沟槽设计在性能优势方面与Si功率MOSFET技术的发展有许多相似之处。...

2024-05-16 标签:英飞凌MOSFET功率器件 525 0

使用Simcenter全面评估SiC 器件的特性——Simcenter为热瞬态测试和功率循环提供全面支持

使用Simcenter全面评估SiC 器件的特性——Simcenter为热瞬态测试和功率循环提供全面支持

内容摘要传统的硅金属-氧化物-半导体场效应晶体管(MOSFET)具有成熟的技术和低廉的成本,在中压和绝缘栅双极晶体管(IGBT)高压功率电子器件中占主导...

2024-05-07 标签:测试半导体SiC 621 0

仿真微调:提高电力电子电路的精度

仿真微调:提高电力电子电路的精度

作者:James Victory,安森美电源方案事业群 TD 建模和仿真方案研究员 在电力电子和电路仿真领域,精度至关重要。仿真结果的真实性取决于各个器...

2024-04-30 标签:仿真SiC模型 1712 0

相关标签

相关话题

换一批
  • 快充技术
    快充技术
    +关注
  • 尼吉康
    尼吉康
    +关注
  • trinamic
    trinamic
    +关注
    TRINAMIC总部位于德国汉堡,经过近十几年的发展在半导体行业被称作是一个神话,主要致力与运动控制产品的设计与研发(步进和直流无刷系统)主要产品包括芯片,模块和系统。
  • 无线供电
    无线供电
    +关注
    无线供电,是一种方便安全的新技术,无需任何物理上的连接,电能可以近距离无接触地传输给负载。实际上近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。
  • 宁德时代
    宁德时代
    +关注
  • 艾德克斯
    艾德克斯
    +关注
    ITECH 艾德克斯电子为专业的仪器制造商,致力于“功率电子”产品为核心的相关产业测试解决方案的研究,通过不断深入了解各个行业的测试需求,持续提供给客户具有竞争力的测试方案。
  • 快充
    快充
    +关注
    目前手机快速充电主要分为三大类:VOOC闪充快速充电技术、高通Quick Charge 2.0快速充电技术、联发科Pump Express Plus快速充电技术。 另外在电动汽车领域快充也有很大的需求,电动车的续航需求不断提高已经让“2小时快速充电”成为现实。
  • Qi标准
    Qi标准
    +关注
    国际无线充电联盟(Wireless Power Consortium,WPC)2010年8月31日上午在北京钓鱼台国宾馆发布Qi无线充电国际标准,将该标准引入中国。
  • Pebble
    Pebble
    +关注
    Pebble,是一家智能手表厂商。2015年2 月底,智能手表厂商 Pebble 发起了新众筹,上线不足 1 小时就筹到了 100 万美元。
  • WPC
    WPC
    +关注
  • 手机快充
    手机快充
    +关注
    手机快充电主要分为三大类:VOOC闪充快速充电技术、高通Quick Charge 2.0快速充电技术、联发科Pump Express Plus快速充电技术。
  • A4WP
    A4WP
    +关注
    A4WP由三星与Qualcomm创立的无线充电联盟,英特尔已加入该组织,并成为董事成员。
  • 电池系统
    电池系统
    +关注
     BMS电池系统俗称之为电池保姆或电池管家,主要就是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
  • MAX660
    MAX660
    +关注
    MAX660 单片电荷泵电压逆变器将+1.5V 至+5.5V 输入转换为相应的-1.5V 至-5.5V 输出。仅使用两个低成本电容器,电荷泵的 100mA 输出取代了开关稳压器,消除了电感器及其相关成本、尺寸和 EMI。
  • 智能变电站
    智能变电站
    +关注
    采用可靠、经济、集成、低碳、环保的设备与设计,以全站信息数字化、通信平台网络化、信息共享标准化、系统功能集成化、结构设计紧凑化、高压设备智能化和运行状态可视化等为基本要求,能够支持电网实时在线分析和控制决策,进而提高整个电网运行可靠性及经济性的变电站。
  • USB PD
    USB PD
    +关注
  • 太阳能充电
    太阳能充电
    +关注
  • PSR
    PSR
    +关注
  • 光伏并网逆变器
    光伏并网逆变器
    +关注
    逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变器中,由于直流电压较低,如12V、24V,就必须设计升压电路。
  • 浪涌抑制器
    浪涌抑制器
    +关注
  • USB-PD
    USB-PD
    +关注
  • 纳微半导体
    纳微半导体
    +关注
    Navitas 成立于 2014 年,开发的超高效氮化镓 (GaN)半导体在效率、性能、尺寸、成本和可持续性方面正在彻底改变电力电子领域。Navitas 这个名字来源于拉丁语中的能源,它不仅体现了我们对开发技术以改善和更可持续的能源使用的关注,还体现了我们到 2026 年为估计 13B 美元的功率半导体市场带来的能源。
  • PWM信号
    PWM信号
    +关注
    脉冲宽度调制是一种模拟控制方式,根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
  • 医疗电源
    医疗电源
    +关注
  • 系统电源
    系统电源
    +关注
  • DCDC电源
    DCDC电源
    +关注
    DC/DC表示的是将某一电压等级的直流电源变换其他电压等级直流电源的装置。DC/DC按电压等级变换关系分升压电源和降压电源两类,按输入输出关系分隔离电源和无隔离电源两类。例如车载直流电源上接的DC/DC变换器是把高压的直流电变换为低压的直流电。
  • 共享充电宝
    共享充电宝
    +关注
    共享充电宝是指企业提供的充电租赁设备,用户使用移动设备扫描设备屏幕上的二维码交付押金,即可租借一个充电宝,充电宝成功归还后,押金可随时提现并退回账户。2021年4月,研究机构数据显示,2020年全国在线共享充电宝设备量已超过440万,用户规模超过2亿人。随着用户规模与落地场景的激增,消费者对共享充电宝的价格变得越来越敏感。
  • LT8705
    LT8705
    +关注
  • UCD3138
    UCD3138
    +关注
  • 董明珠
    董明珠
    +关注
    董明珠, 出生于江苏南京,企业家 ,先后毕业于安徽芜湖职业技术学院、中南财经政法大学EMBA2008级 、中国社会科学院经济学系研究生班、中欧国际工商学院EMBA 。   1990年进入格力做业务经理。 1994年开始相继任珠海格力电器股份有限公司经营部部长、副总经理、副董事长。并在2012年5月,被任命为格力集团董事长。连任第十届、第十一届和第十二届全国人大代表,担任民建中央常委、广东省女企业家协会副会长、珠海市红十字会荣誉会长等职务 。2004年3月,当选人民日报《中国经济周刊》评选的2003-2004年度“中国十大女性经济人物”。2004年6月被评为“受MBA尊敬的十大创新企业家”和2004年11月被评为“2004年度中国十大营销人物”

关注此标签的用户(29人)

jf_87116849 jf_27590559 Austin11122 jf_19631743 jf_91020522 efans_80e021 13148775181 画皮西瓜 角里先生同学 jf_59050084 cqdfig jf_56680965

编辑推荐厂商产品技术软件/工具OS/语言教程专题

电机控制 DSP 氮化镓 功率放大器 ChatGPT 自动驾驶 TI 瑞萨电子
BLDC PLC 碳化硅 二极管 OpenAI 元宇宙 安森美 ADI
无刷电机 FOC IGBT 逆变器 文心一言 5G 英飞凌 罗姆
直流电机 PID MOSFET 传感器 人工智能 物联网 NXP 赛灵思
步进电机 SPWM 充电桩 IPM 机器视觉 无人机 三菱电机 ST
伺服电机 SVPWM 光伏发电 UPS AR 智能电网 国民技术 Microchip
瑞萨 沁恒股份 全志 国民技术 瑞芯微 兆易创新 芯海科技 Altium
德州仪器 Vishay Micron Skyworks AMS TAIYOYUDEN 纳芯微 HARTING
adi Cypress Littelfuse Avago FTDI Cirrus LogIC Intersil Qualcomm
st Murata Panasonic Altera Bourns 矽力杰 Samtec 扬兴科技
microchip TDK Rohm Silicon Labs 圣邦微电子 安费诺工业 ixys Isocom Compo
安森美 DIODES Nidec Intel EPSON 乐鑫 Realtek ERNI电子
TE Connectivity Toshiba OMRON Sensirion Broadcom Semtech 旺宏 英飞凌
Nexperia Lattice KEMET 顺络电子 霍尼韦尔 pulse ISSI NXP
Xilinx 广濑电机 金升阳 君耀电子 聚洵 Liteon 新洁能 Maxim
MPS 亿光 Exar 菲尼克斯 CUI WIZnet Molex Yageo
Samsung 风华高科 WINBOND 长晶科技 晶导微电子 上海贝岭 KOA Echelon
Coilcraft LRC trinamic
放大器 运算放大器 差动放大器 电流感应放大器 比较器 仪表放大器 可变增益放大器 隔离放大器
时钟 时钟振荡器 时钟发生器 时钟缓冲器 定时器 寄存器 实时时钟 PWM 调制器
视频放大器 功率放大器 频率转换器 扬声器放大器 音频转换器 音频开关 音频接口 音频编解码器
模数转换器 数模转换器 数字电位器 触摸屏控制器 AFE ADC DAC 电源管理
线性稳压器 LDO 开关稳压器 DC/DC 降压转换器 电源模块 MOSFET IGBT
振荡器 谐振器 滤波器 电容器 电感器 电阻器 二极管 晶体管
变送器 传感器 解析器 编码器 陀螺仪 加速计 温度传感器 压力传感器
电机驱动器 步进驱动器 TWS BLDC 无刷直流驱动器 湿度传感器 光学传感器 图像传感器
数字隔离器 ESD 保护 收发器 桥接器 多路复用器 氮化镓 PFC 数字电源
开关电源 步进电机 无线充电 LabVIEW EMC PLC OLED 单片机
5G m2m DSP MCU ASIC CPU ROM DRAM
NB-IoT LoRa Zigbee NFC 蓝牙 RFID Wi-Fi SIGFOX
Type-C USB 以太网 仿真器 RISC RAM 寄存器 GPU
语音识别 万用表 CPLD 耦合 电路仿真 电容滤波 保护电路 看门狗
CAN CSI DSI DVI Ethernet HDMI I2C RS-485
SDI nas DMA HomeKit 阈值电压 UART 机器学习 TensorFlow
Arduino BeagleBone 树莓派 STM32 MSP430 EFM32 ARM mbed EDA
示波器 LPC imx8 PSoC Altium Designer Allegro Mentor Pads
OrCAD Cadence AutoCAD 华秋DFM Keil MATLAB MPLAB Quartus
C++ Java Python JavaScript node.js RISC-V verilog Tensorflow
Android iOS linux RTOS FreeRTOS LiteOS RT-THread uCOS
DuerOS Brillo Windows11 HarmonyOS
林超文PCB设计:PADS教程,PADS视频教程 郑振宇老师:Altium Designer教程,Altium Designer视频教程
张飞实战电子视频教程 朱有鹏老师:海思HI3518e教程,HI3518e视频教程
李增老师:信号完整性教程,高速电路仿真教程 华为鸿蒙系统教程,HarmonyOS视频教程
赛盛:EMC设计教程,EMC视频教程 杜洋老师:STM32教程,STM32视频教程
唐佐林:c语言基础教程,c语言基础视频教程 张飞:BUCK电源教程,BUCK电源视频教程
正点原子:FPGA教程,FPGA视频教程 韦东山老师:嵌入式教程,嵌入式视频教程
张先凤老师:C语言基础视频教程 许孝刚老师:Modbus通讯视频教程
王振涛老师:NB-IoT开发视频教程 Mill老师:FPGA教程,Zynq视频教程
C语言视频教程 RK3566芯片资料合集
朱有鹏老师:U-Boot源码分析视频教程 开源硬件专题