0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

标签 > sic

sic

sic

+关注29人关注

金刚砂又名碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。

文章:2397 浏览:62394 帖子:123

sic资讯

SiC器件如何改变半导体行业的面貌

SiC器件如何改变半导体行业的面貌

碳化硅成分,碳和硅分别是银河系中第四大和第八大元素。尽管如此,它很少自然地出现在地球上,只有在陨石和一些岩石沉积物中发现的微小痕迹。不过,它可以很容易地...

2022-08-08 标签:MOSFET半导体SiC 619 0

汽车应用中的宽带隙材料

汽车应用中的宽带隙材料

宽带隙半导体 (WBG),例如碳化硅 (SiC) 和氮化镓 (GaN),与硅相比具有更出色的性能:更高的效率和开关频率、更高的工作温度和工作电压。EV ...

2022-08-08 标签:SiCGaN碳化硅 877 0

工业家合作满足 GaN 和 SiC 市场需求

工业家合作满足 GaN 和 SiC 市场需求

GaN和 SiC令人印象深刻的品质使它们深受业内人士的喜爱。然而,它带来了满足生产和供应需求的挑战,因此专业人士、投资者和工业家正在合作以确保足够的可用...

2022-08-08 标签:SiCGaN 863 0

简要介绍筛选后器件经过马拉松(Marathon)实验的典型结果

目前针对SiC的研究已相当深入,仍有不少人关注SiC材料的栅氧能力,本文对此再做一个简要介绍。如图1所示,相较于Si基材料,SiC与SiO2栅氧层界面缺...

2022-08-05 标签:功率器件SiC派恩杰 1779 0

可靠性、创新、整体解决方案……碳化硅的新高度

可靠性、创新、整体解决方案……碳化硅的新高度

对碳化硅 (SiC) 技术的需求持续增长,该技术可最大限度地提高当今电力系统的效率,同时减小其尺寸、重量和成本。但是 SiC 解决方案并不是硅的直接替代...

2022-08-05 标签:半导体SiC碳化硅 721 0

用于SiC应用的低电感可编程栅极驱动器模块

用于SiC应用的低电感可编程栅极驱动器模块

碳化硅半导体 (SiC) 在工业产品的效率、更高的外形尺寸和工作温度方面提供了创新技术。SiC 技术现在被广泛认为是硅的可靠替代品。许多功率模块和功率逆...

2022-08-05 标签:驱动器可编程SiC 839 0

高压宽带隙谐振转换器中MLCC的设计注意事项

高压宽带隙谐振转换器中MLCC的设计注意事项

在 SiC 逆变器中,DC-Link 电容器需要能够处理高纹波电流、高电压、高温 (150C) 和高频。H 桥中的缓冲电容器需要能够处理高 dV/dt、...

2022-08-05 标签:MLCC逆变器SiC 1123 0

碳化硅 (SiC) FET 推动电力电子技术发展

碳化硅 (SiC) FET 推动电力电子技术发展

甲碳化硅(SiC) JFET是一结基于常导通晶体管类型,它提供了最低的导通电阻R DS(ON)的每单位面积和是一个强大的设备。与传统 MOSFET 器件...

2022-08-05 标签:半导体电力电子FET 1156 0

从瓦特到兆瓦:碳化硅的优势及性能

从瓦特到兆瓦:碳化硅的优势及性能

设计人员当然对碳化硅感兴趣,因为它具有潜力。这种潜力包括:在不损失效率的情况下实现高频开关——这意味着更快的开关和 更低的开关损耗。 导通电阻 (RDS...

2022-08-05 标签:半导体SiC碳化硅 1098 0

测试、测量试验,确认 GaN 技术的价值

测试、测量试验,确认 GaN 技术的价值

通过测试和测量持久力来评估电子设备的质量和耐用性。评估氮化镓 (GaN)价值的测试势在必行,因为它自诞生以来就具有巨大的潜力,可以实现更高效的功率转换,...

2022-08-05 标签:半导体工业SiC 1201 0

用于 5G 行业的射频功率半导体

用于 5G 行业的射频功率半导体

使用 WBG 材料的射频功率半导体解决了 5G 应用中的许多技术挑战,缩小了与旧的基于硅的技术之间的差距。 5G 技术的进步正在推动半导体行业面临新的技...

2022-08-05 标签:射频SiCGaN 1447 0

电源设计说明:让我们使用SiC MOSFET构建双向降压-升压转换器

电源设计说明:让我们使用SiC MOSFET构建双向降压-升压转换器

随着高效蓄能器(电池和超级电容器)的大量使用,趋势是朝着更好的电流管理方向发展。双向 DC/DC 转换器可以保持电池健康并延长其使用寿命。

2022-08-05 标签:MOSFET电源设计升压转换器 798 0

使用 WBG 半导体进行设计需要更多的奉献精神

使用 WBG 半导体进行设计需要更多的奉献精神

工程师熟悉电磁干扰、并联和布局,但在从硅基芯片过渡到碳化硅或宽带隙器件时,需要多加注意。 据chip称,硅(Si)基半导体比宽带隙(WBG)半导体领先十...

2022-08-05 标签:半导体设计SiC 947 0

碳化硅、氮化镓:注意带隙

碳化硅、氮化镓:注意带隙

近年来,碳化硅(SiC)和氮化镓(GaN)等宽带隙(WBG)半导体受到了广泛关注。这两种化合物都可以承受比硅更高的频率、更高的电压和更复杂的电子产品。S...

2022-08-05 标签:电动汽车半导体SiC 910 0

使用SiC实现太阳能和可再生能源功率转换

使用SiC实现太阳能和可再生能源功率转换

Wolfspeed SiC 目前支持广泛的应用,因为事实证明,基于 SiC 的解决方案比传统的基于 Si 的解决方案具有更高的效率、功率密度和系统成本效...

2022-08-04 标签:功率转换SiC可再生能源 533 0

如何消除SiC MOSFET——栅极电路设计中的错误及其对稳健性的影响

如何消除SiC MOSFET——栅极电路设计中的错误及其对稳健性的影响

为什么需要关注 SiC MOSFET 栅极?尽管具有传统的 SiO 2栅极氧化物,但该氧化物的性能比传统 Si 基半导体中的经典 Si-SiO 2界面更...

2022-08-04 标签:电容器二极管MOSFET 1523 0

最大限度地减少SiC FET中的EMI和开关损耗

最大限度地减少SiC FET中的EMI和开关损耗

SiC FET 速度极快,边缘速率为 50 V/ns 或更高,这对于最大限度地减少开关损耗非常有用,但由此产生的 di/dt 可能达到每纳秒数安培。这会...

2022-08-04 标签:emiFETSiC 1135 0

关于碳化硅的 10 件事

关于碳化硅的 10 件事

碳化硅 (SiC) 是一种由硅 (Si) 和碳 (C) 组成的半导体化合物,属于宽带隙 (WBG) 材料系列。它的物理结合力非常强,使半导体具有很高的机...

2022-08-04 标签:半导体SiC碳化硅 1776 0

使用 Si 和 SiC 器件的电力电子教育工具箱

使用 Si 和 SiC 器件的电力电子教育工具箱

我们知道,技术教育不仅需要理论知识,还需要实践知识和动手经验,让学生在电路层面理解更深层次的概念。2 Labs 实际上帮助学生理解诸如电路设计概念之类的...

2022-08-04 标签:设计电力电子SiC 493 0

电源设计说明:使用SiC进行蒙特卡罗分析

电源设计说明:使用SiC进行蒙特卡罗分析

图 1中的图表显示了一个典型的 RC 电路,其中电容器充电的时间取决于时间常数。准确地说,RC秒后电压达到电源电压的63%左右。在这种情况下,电容器两端...

2022-08-04 标签:电源设计升压转换器DC-DC转换器 682 0

相关标签

相关话题

换一批
  • 快充技术
    快充技术
    +关注
  • 尼吉康
    尼吉康
    +关注
  • trinamic
    trinamic
    +关注
    TRINAMIC总部位于德国汉堡,经过近十几年的发展在半导体行业被称作是一个神话,主要致力与运动控制产品的设计与研发(步进和直流无刷系统)主要产品包括芯片,模块和系统。
  • 无线供电
    无线供电
    +关注
    无线供电,是一种方便安全的新技术,无需任何物理上的连接,电能可以近距离无接触地传输给负载。实际上近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。
  • 宁德时代
    宁德时代
    +关注
  • 艾德克斯
    艾德克斯
    +关注
    ITECH 艾德克斯电子为专业的仪器制造商,致力于“功率电子”产品为核心的相关产业测试解决方案的研究,通过不断深入了解各个行业的测试需求,持续提供给客户具有竞争力的测试方案。
  • 快充
    快充
    +关注
    目前手机快速充电主要分为三大类:VOOC闪充快速充电技术、高通Quick Charge 2.0快速充电技术、联发科Pump Express Plus快速充电技术。 另外在电动汽车领域快充也有很大的需求,电动车的续航需求不断提高已经让“2小时快速充电”成为现实。
  • Qi标准
    Qi标准
    +关注
    国际无线充电联盟(Wireless Power Consortium,WPC)2010年8月31日上午在北京钓鱼台国宾馆发布Qi无线充电国际标准,将该标准引入中国。
  • Pebble
    Pebble
    +关注
    Pebble,是一家智能手表厂商。2015年2 月底,智能手表厂商 Pebble 发起了新众筹,上线不足 1 小时就筹到了 100 万美元。
  • WPC
    WPC
    +关注
  • 手机快充
    手机快充
    +关注
    手机快充电主要分为三大类:VOOC闪充快速充电技术、高通Quick Charge 2.0快速充电技术、联发科Pump Express Plus快速充电技术。
  • A4WP
    A4WP
    +关注
    A4WP由三星与Qualcomm创立的无线充电联盟,英特尔已加入该组织,并成为董事成员。
  • 电池系统
    电池系统
    +关注
     BMS电池系统俗称之为电池保姆或电池管家,主要就是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
  • MAX660
    MAX660
    +关注
    MAX660 单片电荷泵电压逆变器将+1.5V 至+5.5V 输入转换为相应的-1.5V 至-5.5V 输出。仅使用两个低成本电容器,电荷泵的 100mA 输出取代了开关稳压器,消除了电感器及其相关成本、尺寸和 EMI。
  • 智能变电站
    智能变电站
    +关注
    采用可靠、经济、集成、低碳、环保的设备与设计,以全站信息数字化、通信平台网络化、信息共享标准化、系统功能集成化、结构设计紧凑化、高压设备智能化和运行状态可视化等为基本要求,能够支持电网实时在线分析和控制决策,进而提高整个电网运行可靠性及经济性的变电站。
  • USB PD
    USB PD
    +关注
  • 太阳能充电
    太阳能充电
    +关注
  • PSR
    PSR
    +关注
  • 光伏并网逆变器
    光伏并网逆变器
    +关注
    逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变器中,由于直流电压较低,如12V、24V,就必须设计升压电路。
  • 浪涌抑制器
    浪涌抑制器
    +关注
  • USB-PD
    USB-PD
    +关注
  • 纳微半导体
    纳微半导体
    +关注
    Navitas 成立于 2014 年,开发的超高效氮化镓 (GaN)半导体在效率、性能、尺寸、成本和可持续性方面正在彻底改变电力电子领域。Navitas 这个名字来源于拉丁语中的能源,它不仅体现了我们对开发技术以改善和更可持续的能源使用的关注,还体现了我们到 2026 年为估计 13B 美元的功率半导体市场带来的能源。
  • PWM信号
    PWM信号
    +关注
    脉冲宽度调制是一种模拟控制方式,根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
  • 医疗电源
    医疗电源
    +关注
  • 系统电源
    系统电源
    +关注
  • DCDC电源
    DCDC电源
    +关注
    DC/DC表示的是将某一电压等级的直流电源变换其他电压等级直流电源的装置。DC/DC按电压等级变换关系分升压电源和降压电源两类,按输入输出关系分隔离电源和无隔离电源两类。例如车载直流电源上接的DC/DC变换器是把高压的直流电变换为低压的直流电。
  • 共享充电宝
    共享充电宝
    +关注
    共享充电宝是指企业提供的充电租赁设备,用户使用移动设备扫描设备屏幕上的二维码交付押金,即可租借一个充电宝,充电宝成功归还后,押金可随时提现并退回账户。2021年4月,研究机构数据显示,2020年全国在线共享充电宝设备量已超过440万,用户规模超过2亿人。随着用户规模与落地场景的激增,消费者对共享充电宝的价格变得越来越敏感。
  • LT8705
    LT8705
    +关注
  • UCD3138
    UCD3138
    +关注
  • 董明珠
    董明珠
    +关注
    董明珠, 出生于江苏南京,企业家 ,先后毕业于安徽芜湖职业技术学院、中南财经政法大学EMBA2008级 、中国社会科学院经济学系研究生班、中欧国际工商学院EMBA 。   1990年进入格力做业务经理。 1994年开始相继任珠海格力电器股份有限公司经营部部长、副总经理、副董事长。并在2012年5月,被任命为格力集团董事长。连任第十届、第十一届和第十二届全国人大代表,担任民建中央常委、广东省女企业家协会副会长、珠海市红十字会荣誉会长等职务 。2004年3月,当选人民日报《中国经济周刊》评选的2003-2004年度“中国十大女性经济人物”。2004年6月被评为“受MBA尊敬的十大创新企业家”和2004年11月被评为“2004年度中国十大营销人物”

关注此标签的用户(29人)

jf_87116849 jf_27590559 Austin11122 jf_19631743 jf_91020522 efans_80e021 13148775181 画皮西瓜 角里先生同学 jf_59050084 cqdfig jf_56680965

编辑推荐厂商产品技术软件/工具OS/语言教程专题

电机控制 DSP 氮化镓 功率放大器 ChatGPT 自动驾驶 TI 瑞萨电子
BLDC PLC 碳化硅 二极管 OpenAI 元宇宙 安森美 ADI
无刷电机 FOC IGBT 逆变器 文心一言 5G 英飞凌 罗姆
直流电机 PID MOSFET 传感器 人工智能 物联网 NXP 赛灵思
步进电机 SPWM 充电桩 IPM 机器视觉 无人机 三菱电机 ST
伺服电机 SVPWM 光伏发电 UPS AR 智能电网 国民技术 Microchip
瑞萨 沁恒股份 全志 国民技术 瑞芯微 兆易创新 芯海科技 Altium
德州仪器 Vishay Micron Skyworks AMS TAIYOYUDEN 纳芯微 HARTING
adi Cypress Littelfuse Avago FTDI Cirrus LogIC Intersil Qualcomm
st Murata Panasonic Altera Bourns 矽力杰 Samtec 扬兴科技
microchip TDK Rohm Silicon Labs 圣邦微电子 安费诺工业 ixys Isocom Compo
安森美 DIODES Nidec Intel EPSON 乐鑫 Realtek ERNI电子
TE Connectivity Toshiba OMRON Sensirion Broadcom Semtech 旺宏 英飞凌
Nexperia Lattice KEMET 顺络电子 霍尼韦尔 pulse ISSI NXP
Xilinx 广濑电机 金升阳 君耀电子 聚洵 Liteon 新洁能 Maxim
MPS 亿光 Exar 菲尼克斯 CUI WIZnet Molex Yageo
Samsung 风华高科 WINBOND 长晶科技 晶导微电子 上海贝岭 KOA Echelon
Coilcraft LRC trinamic
放大器 运算放大器 差动放大器 电流感应放大器 比较器 仪表放大器 可变增益放大器 隔离放大器
时钟 时钟振荡器 时钟发生器 时钟缓冲器 定时器 寄存器 实时时钟 PWM 调制器
视频放大器 功率放大器 频率转换器 扬声器放大器 音频转换器 音频开关 音频接口 音频编解码器
模数转换器 数模转换器 数字电位器 触摸屏控制器 AFE ADC DAC 电源管理
线性稳压器 LDO 开关稳压器 DC/DC 降压转换器 电源模块 MOSFET IGBT
振荡器 谐振器 滤波器 电容器 电感器 电阻器 二极管 晶体管
变送器 传感器 解析器 编码器 陀螺仪 加速计 温度传感器 压力传感器
电机驱动器 步进驱动器 TWS BLDC 无刷直流驱动器 湿度传感器 光学传感器 图像传感器
数字隔离器 ESD 保护 收发器 桥接器 多路复用器 氮化镓 PFC 数字电源
开关电源 步进电机 无线充电 LabVIEW EMC PLC OLED 单片机
5G m2m DSP MCU ASIC CPU ROM DRAM
NB-IoT LoRa Zigbee NFC 蓝牙 RFID Wi-Fi SIGFOX
Type-C USB 以太网 仿真器 RISC RAM 寄存器 GPU
语音识别 万用表 CPLD 耦合 电路仿真 电容滤波 保护电路 看门狗
CAN CSI DSI DVI Ethernet HDMI I2C RS-485
SDI nas DMA HomeKit 阈值电压 UART 机器学习 TensorFlow
Arduino BeagleBone 树莓派 STM32 MSP430 EFM32 ARM mbed EDA
示波器 LPC imx8 PSoC Altium Designer Allegro Mentor Pads
OrCAD Cadence AutoCAD 华秋DFM Keil MATLAB MPLAB Quartus
C++ Java Python JavaScript node.js RISC-V verilog Tensorflow
Android iOS linux RTOS FreeRTOS LiteOS RT-THread uCOS
DuerOS Brillo Windows11 HarmonyOS
林超文PCB设计:PADS教程,PADS视频教程 郑振宇老师:Altium Designer教程,Altium Designer视频教程
张飞实战电子视频教程 朱有鹏老师:海思HI3518e教程,HI3518e视频教程
李增老师:信号完整性教程,高速电路仿真教程 华为鸿蒙系统教程,HarmonyOS视频教程
赛盛:EMC设计教程,EMC视频教程 杜洋老师:STM32教程,STM32视频教程
唐佐林:c语言基础教程,c语言基础视频教程 张飞:BUCK电源教程,BUCK电源视频教程
正点原子:FPGA教程,FPGA视频教程 韦东山老师:嵌入式教程,嵌入式视频教程
张先凤老师:C语言基础视频教程 许孝刚老师:Modbus通讯视频教程
王振涛老师:NB-IoT开发视频教程 Mill老师:FPGA教程,Zynq视频教程
C语言视频教程 RK3566芯片资料合集
朱有鹏老师:U-Boot源码分析视频教程 开源硬件专题