0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

标签 > VLAN

VLAN

+关注 0人关注

VLAN的中文名为“虚拟局域网”。虚拟局域网(VLAN)是一组逻辑上的设备和用户,这些设备和用户并不受物理位置的限制,可以根据功能、部门及应用等因素将它们组织起来,相互之间的通信就好像它们在同一个网段中一样,由此得名虚拟局域网。

文章: 226
视频: 165
浏览: 35570
帖子: 17

VLAN简介

  VLAN(Virtual Local Area Network)的中文名为“虚拟局域网”。虚拟局域网(VLAN)是一组逻辑上的设备和用户,这些设备和用户并不受物理位置的限制,可以根据功能、部门及应用等因素将它们组织起来,相互之间的通信就好像它们在同一个网段中一样,由此得名虚拟局域网。VLAN是一种比较新的技术,工作在OSI参考模型的第2层和第3层,一个VLAN就是一个广播域,VLAN之间的通信是通过第3层的路由器来完成的。与传统的局域网技术相比较,VLAN技术更加灵活,它具有以下优点: 网络设备的移动、添加和修改的管理开销减少;可以控制广播活动;可提高网络的安全性。在计算机网络中,一个二层网络可以被划分为多个不同的广播域,一个广播域对应了一个特定的用户组,默认情况下这些不同的广播域是相互隔离的。不同的广播域之间想要通信,需要通过一个或多个路由器。这样的一个广播域就称为VLAN。

VLAN百科

  VLAN(Virtual Local Area Network)的中文名为“虚拟局域网”。虚拟局域网(VLAN)是一组逻辑上的设备和用户,这些设备和用户并不受物理位置的限制,可以根据功能、部门及应用等因素将它们组织起来,相互之间的通信就好像它们在同一个网段中一样,由此得名虚拟局域网。VLAN是一种比较新的技术,工作在OSI参考模型的第2层和第3层,一个VLAN就是一个广播域,VLAN之间的通信是通过第3层的路由器来完成的。与传统的局域网技术相比较,VLAN技术更加灵活,它具有以下优点: 网络设备的移动、添加和修改的管理开销减少;可以控制广播活动;可提高网络的安全性。在计算机网络中,一个二层网络可以被划分为多个不同的广播域,一个广播域对应了一个特定的用户组,默认情况下这些不同的广播域是相互隔离的。不同的广播域之间想要通信,需要通过一个或多个路由器。这样的一个广播域就称为VLAN。

  VLAN

  IEEE于1999年颁布了用于标准化VLAN实现方案的802.1Q协议标准草案。VLAN技术的出现,使得管理员根据实际应用需求,把同一物理局域网内的不同用户逻辑地划分成不同的广播域,每一个VLAN都包含一组有着相同需求的计算机工作站,与物理上形成的LAN有着相同的属性。由于它是从逻辑上划分,而不是从物理上划分,所以同一个VLAN内的各个工作站没有限制在同一个物理范围中,即这些工作站可以在不同物理LAN网段。由VLAN的特点可知,一个VLAN内部的广播和单播流量都不会转发到其他VLAN中,从而有助于控制流量、减少设备投资、简化网络管理、提高网络的安全性。交换技术的发展,也加快了新的交换技术(VLAN)的应用速度。通过将企业网络划分为虚拟网络VLAN网段,可以强化网络管理和网络安全,控制不必要的数据广播。在共享网络中,一个物理的网段就是一个广播域。而在交换网络中,广播域可以是有一组任意选定的第二层网络地址(MAC地址)组成的虚拟网段。这样,网络中工作组的划分可以突破共享网络中的地理位置限制,而完全根据管理功能来划分。这种基于工作流的分组模式,大大提高了网络规划和重组的管理功能。在同一个VLAN中的工作站,不论它们实际与哪个交换机连接,它们之间的通讯就好象在独立的交换机上一样。同一个VLAN中的广播只有VLAN中的成员才能听到,而不会传输到其他的VLAN中去,这样可以很好的控制不必要的广播风暴的产生。同时,若没有路由的话,不同VLAN之间不能相互通讯,这样增加了企业网络中不同部门之间的安全性。网络管理员可以通过配置VLAN之间的路由来全面管理企业内部不同管理单元之间的信息互访。交换机是根据工作站的MAC地址来划分VLAN的。所以,用户可以自由的在企业网络中移动办公,不论他在何处接入交换网络,他都可以与VLAN内其他用户自如通讯。VLAN网络可以是有混合的网络类型设备组成,比如:10M以太网、100M以太网、令牌网、FDDI、CDDI等等,可以是工作站、服务器、集线器、网络上行主干等等。VLAN除了能将网络划分为多个广播域,从而有效地控制广播风暴的发生,以及使网络的拓扑结构变得非常灵活的优点外,还可以用于控制网络中不同部门、不同站点之间的互相访问。物理位置不同的多个主机如果划分属于同一个VLAN,则这些主机之间可以相互通信。物理位置相同的多个主机如果属于不同的VLAN,则这些主机之间不能直接通信。VLAN通常在交换机或路由器上实现,在以太网帧中增加VLAN标签来给以太网帧分类,具有相同VLAN标签的以太网帧在同一个广播域中传送。VLAN是为解决以太网的广播问题和安全性而提出的一种协议,它在以太网帧的基础上增加了VLAN头,用VLAN ID把用户划分为更小的工作组,限制不同工作组间的用户互访,每个工作组就是一个虚拟局域网。虚拟局域网的好处是可以限制广播范围,并能够形成虚拟工作组,动态管理网络。

  目的

  VLAN(Virtual Local Area Network,虚拟局域网)的目的非常的多。通过认识VLAN的本质,将可以了解到其用处究竟在哪些地方。第一,要知道192.168.1.2/30和192.168.2.6/30都属于不同的网段,都必须要通过路由器才能进行访问,凡是不同网段间要互相访问,都必须通过路由器。第二,VLAN本质就是指一个网段,之所以叫做虚拟的局域网,是因为它是在虚拟的路由器的接口下创建的网段。下面,给予说明。比如一个路由器只有一个用于终端连接的端口(当然这种情况基本不可能发生,只不过简化举例),这个端口被分配了192.168.1.1/24的地址。然而由于公司有两个部门,一个销售部,一个企划部,每个部门要求单独成为一个子网,有单独的服务器。那么当然可以划分为192.168.1.0--127/25、192.168.1.128--255/25。但是路由器的物理端口只应该可以分配一个IP地址,那怎样来区分不同网段了?这就可以在这个物理端口下,创建两个子接口---逻辑接口实现。比如逻辑接口F0/0.1就分配IP地址192.168.1.1/25,用于销售部,而F0/0.2就分配IP地址192.168.1.129/25,用于企划部。这样就等于用一个物理端口却实现了两个逻辑接口的功能,这样就将原本只能划分一个网段的情形,扩展到了可以划分2个或者更多个网段的情形。这些网段因为是在逻辑接口下创建的,所以称之为虚拟局域网VLAN。这是在路由器的层次上阐述了VLAN的目的。第三,将在交换机的层次上阐述VLAN的目的。在现实中,由于很多原因必须划分出不同网段。比如就简单的只有销售部和企划部两个网段。那么可以简单的将销售部全部接入一个交换机,然后接入路由器的一个端口,把企划部全部接入一个交换机,然后接入一个路由器端口。这种情况是LAN。然而正如上面所说,如果路由器就一个用于终端的接口,那么这两个交换机就必须接入这同一个路由器的接口,这个时候,如果还想保持原来的网段的划分,那么就必须使用路由器的子接口,创建VLAN.同样,比如两个交换机,如果你想要每个交换机上的端口都分别属于不同的网段,那么你有几个网段,就提供几个路由器的接口,这个时候,虽然在路由器的物理接口上可以定义这个接口可以连接哪个网段,但是在交换机的层次上,它并不能区分哪个端口属于哪个网段,那么唯一实现能区分的方法,就是划分VLAN,使用了VLAN就能区分出某个交换机端口的终端是属于哪个网段的。综上,当一个交换机上的所有端口中有至少一个端口属于不同网段的时候,当路由器的一个物理端口要连接2个或者以上的网段的时候,就是VLAN发挥作用的时候,这就是VLAN的目的。

  优点

  限制网络上的广播,将网络划分为多个VLAN可减少参与广播风暴的设备数量。LAN分段可以防止广播风暴波及整个网络。VLAN可以提供建立防火墙的机制,防止交换网络的过量广播。使用VLAN,可以将某个交换端口或用户赋于某一个特定的VLAN组,该VLAN组可以在一个交换网中或跨接多个交换机,在一个VLAN中的广播不会送到VLAN之外。同样,相邻的端口不会收到其他VLAN产生的广 播。这样可以减少广播流量,释放带宽给用户应用,减少广播的产生。

  安全

  增强局域网的安全性,含有敏感数据的用户组可与网络的其余部分隔离,从而降低泄露机密信息的可能性。不同VLAN内的报文在传输时是相互隔离的,即一个VLAN内的用户不能和其它VLAN内的用户直接通信,如果不同VLAN要进行通信,则需要通过路由器或三层交换机等三层设备。成本高昂的网络升级需求减少,现有带宽和上行链路的利用率更高,因此可节约成本。将第二层平面网络划分为多个逻辑工作组(广播域)可以减少网络上不必要的流量并提高性能。VLAN为网络管理带来了方便,因为有相似网络需求的用户将共享同一个VLAN。VLAN 将用户和网络设备聚合到一起,以支持商业需求或地域上的需求。通过职能划分,项目管理或特殊应用的处理都变得十分方便,例如可以轻松管理教师的电子教学开发平台。此外,也很容易确定升级网络服务的影响范围。

  灵活性

  借助VLAN技术,能将不同地点、不同网络、不同用户组合在一起,形成一个虚拟的网络环境,就像使用本地LAN一样方便、灵活、有效。VLAN可以降低移动或变更工作站地理位置的管理费用,特别是一些业务情况有经常性变动的公司使用了VLAN后,这部分管理费用大大降低。

  技术

  局域网的发展是VLAN产生的基础,所以在介绍VLAN之前,我们先来了解一下局域网的有关知识。局域网(LAN)通常是一个单独的广播域,主要由Hub、网桥或交换机等网络设备连接同一网段内的所有节点形成。处于同一个局域网之内的网络节点之间可以直接通信,而处于不同局域网段的设备之间的通信则必须经过路由器才能通信。图1所示即为使用路由器构建的典型的局域网环境。随着网络的不断扩展,接入设备逐渐增多,网络结构也日趋复杂,必须使用更多的路由器才能将不同的用户划分到各自的广播域中,在不同的局域网之间提供网络互联。但这样做存在两个缺陷:首先,随着网络中路由器数量的增多,网络延时逐渐加长,从而导致网络数据传输速度的下降。这主要是因为数据在从一个局域网传递到另一个局域网时,必须经过路由器的路由操作:路由器根据数据包中的相应信息确定数据包的目标地址,然后再选择合适的路径转发出去。其次,用户是按照它们的物理连接被自然地划分到不同的用户组(广播域)中。这种分割方式并不是根据工作组中所有用户的共同需要和带宽的需求来进行的。因此,尽管不同的工作组或部门对带宽的需求有很大的差异,但它们却被机械地划分到同一个广播域中争用相同的带宽。

  常见应用

  Port vlan与Tag vlan

  port vlan 基于端口的VLAN,处于同一VLAN端口之间才能相互通信。

  tag vlan 基于IEEE 802.1Q(vlan标准),用VID(vlan id)来划分不同的VLAN

  基于端口的VLAN优缺点

  基于端口的VLAN,简单的讲就是交换机的一个端口就是一个虚拟局域网,凡是连接在这个端口上的主机属于同个虚拟局域网之中。基于端口的VLAN的优点为:由于一个端口就是一个独立的局域网。所以,当数据在网络中传输的时候,交换机就不会把数据包转发给其他的端口,如果用户需要将数据发送到其他的虚拟局域网中,就需要先由交换机发往路由器再由路由器发往其他端口;同时以端口为中心的VLAN中完全由用户自由支配端口,无形之中就更利于管理。但是美中不足的是以端口为中心的VLAN,当用户位置改变时,往往也伴随着用户位置的改变而对网线也要进行迁移。如果不会经常移动客户机的话,采用这一方式倒也不错。

  静态VLAN的优缺点

  可以说静态VLAN与基于端口的VLAN有一丝相似之处,用户可在交换机上让一个或多个交换机端口形成一个略大一些的虚拟局域网。从一定意义上讲静态虚拟局域网在某些程度上弥补了基于端口的虚拟局域网的缺点。缺陷方面,静态VLAN虽说是可以使多个端口的设置成一个虚拟局域网,假如两个不同端口、不同虚拟局域网的人员聚到一起协商一些事情,这时候问题就出现了,因为端口及虚拟局域网的不一致往往就会直接导致某一个虚拟局域网的人员就不能正常的访问他原先所在的VLAN之中(静态虚拟局域网的端口在同一时间只能属于同一个虚拟局域网),这样就需要网络管理人员随时配合及时修改该线路上的端口。

  动态VLAN的优缺点

  与上面两种虚拟局域网的组成方式相比动态的虚拟局域网的优点真的是太多了。首先它适用于当前的无线局域网技术,其次,当用户有需要时对工作基点进行移动时完全不用担心在静态虚拟局域网与基于端口的虚拟局域网出现的一些问题在动态的虚拟局域网中出现,因为动态的虚拟局域网在建立初期已经由网络管理员将整个网络中的所有MAC地址全部输入到了路由器之中,同时如何由路由器通过MAC地址来自动区分每一台电脑属于那一个虚拟局域网,之后将这台电脑连接到对应的虚拟局域网之中。说起缺点,动态的虚拟局域网的缺点跟本谈不上缺点,只是在VLAN建立初期,网络管理人员需将所有机器的MAC进行登记之后划分出MAC所对应的机器的不同权限(虚拟局域网)即可。

  小白都能看明白的VLAN原理解释

  为什么需要VLAN

  1. 什么是VLAN?

  VLAN(Virtual LAN),翻译成中文是“虚拟局域网”。LAN可以是由少数几台家用计算机构成的网络,也可以是数以百计的计算机构成的企业网络。VLAN所指的LAN特指使用路由器分割的网络——也就是广播域。

  在此让我们先复习一下广播域的概念。广播域,指的是广播帧(目标MAC地址全部为1)所能传递到的范围,亦即能够直接通信的范围。严格地说,并不仅仅是广播帧,多播帧(Multicast Frame)和目标不明的单播帧(Unknown Unicast Frame)也能在同一个广播域中畅行无阻。

  本来,二层交换机只能构建单一的广播域,不过使用VLAN功能后,它能够将网络分割成多个广播域。

  2.未分割广播域时……

  那么,为什么需要分割广播域呢?那是因为,如果仅有一个广播域,有可能会影响到网络整体的传输性能。具体原因,请参看附图加深理解。

  

  图中,是一个由5台二层交换机(交换机1~5)连接了大量客户机构成的网络。假设这时,计算机A需要与计算机B通信。在基于以太网的通信中,必须在数据帧中指定目标MAC地址才能正常通信,因此计算机A必须先广播“ARP请求(ARP Request)信息”,来尝试获取计算机B的MAC地址。

  交换机1收到广播帧(ARP请求)后,会将它转发给除接收端口外的其他所有端口,也就是Flooding了。接着,交换机2收到广播帧后也会Flooding。交换机3、4、5也还会Flooding。最终ARP请求会被转发到同一网络中的所有客户机上。

  

  请大家注意一下,这个ARP请求原本是为了获得计算机B的MAC地址而发出的。也就是说:只要计算机B能收到就万事大吉了。可是事实上,数据帧却传遍整个网络,导致所有的计算机都收到了它。如此一来,一方面广播信息消耗了网络整体的带宽,另一方面,收到广播信息的计算机还要消耗一部分CPU时间来对它进行处理。造成了网络带宽和CPU运算能力的大量无谓消耗。

  3. 广播信息是那么经常发出的吗?

  读到这里,您也许会问:广播信息真是那么频繁出现的吗?

  答案是:是的!实际上广播帧会非常频繁地出现。利用TCP/IP协议栈通信时,除了前面出现的ARP外,还有可能需要发出DHCP、RIP等很多其他类型的广播信息。

  ARP广播,是在需要与其他主机通信时发出的。当客户机请求DHCP服务器分配IP地址时,就必须发出DHCP的广播。而使用RIP作为路由协议时,每隔30秒路由器都会对邻近的其他路由器广播一次路由信息。RIP以外的其他路由协议使用多播传输路由信息,这也会被交换机转发(Flooding)。除了TCP/IP以外,NetBEUI、IPX和Apple Talk等协议也经常需要用到广播。例如在Windows下双击打开“网络计算机”时就会发出广播(多播)信息。(Windows XP除外……)

  总之,广播就在我们身边。下面是一些常见的广播通信:

  (1)ARP请求:建立IP地址和MAC地址的映射关系。

  (2)RIP:一种路由协议。

  (3)DHCP:用于自动设定IP地址的协议。

  (4)NetBEUI:Windows下使用的网络协议。

  (5)IPX:NovellNetware使用的网络协议。

  (6)Apple Talk:苹果公司的Macintosh计算机使用的网络协议。

  如果整个网络只有一个广播域,那么一旦发出广播信息,就会传遍整个网络,并且对网络中的主机带来额外的负担。因此,在设计LAN时,需要注意如何才能有效地分割广播域。

  4.广播域的分割与VLAN的必要性

  分割广播域时,一般都必须使用到路由器。使用路由器后,可以以路由器上的网络接口(LAN Interface)为单位分割广播域。

  但是,通常情况下路由器上不会有太多的网络接口,其数目多在1~4个左右。随着宽带连接的普及,宽带路由器(或者叫IP共享器)变得较为常见,但是需要注意的是,它们上面虽然带着多个(一般为4个左右)连接LAN一侧的网络接口,但那实际上是路由器内置的交换机,并不能分割广播域。

  况且使用路由器分割广播域的话,所能分割的个数完全取决于路由器的网络接口个数,使得用户无法自由地根据实际需要分割广播域。

  与路由器相比,二层交换机一般带有多个网络接口。因此如果能使用它分割广播域,那么无疑运用上的灵活性会大大提高。

  用于在二层交换机上分割广播域的技术,就是VLAN。通过利用VLAN,我们可以自由设计广播域的构成,提高网络设计的自由度。

  实现VLAN的机制

  1. 实现VLAN的机制

  在理解了“为什么需要VLAN”之后,接下来让我们来了解一下交换机是如何使用VLAN分割广播域的。

  首先,在一台未设置任何VLAN的二层交换机上,任何广播帧都会被转发给除接收端口外的所有其他端口(Flooding)。例如,计算机A发送广播信息后,会被转发给端口2、3、4。

  

  这时,如果在交换机上生成红、蓝两个VLAN;同时设置端口1、2属于红色VLAN、端口3、4属于蓝色VLAN。再从A发出广播帧的话,交换机就只会把它转发给同属于一个VLAN的其他端口——也就是同属于红色VLAN的端口2,不会再转发给属于蓝色VLAN的端口。

  同样,C发送广播信息时,只会被转发给其他属于蓝色VLAN的端口,不会被转发给属于红色VLAN的端口。

  

  就这样,VLAN通过限制广播帧转发的范围分割了广播域。上图中为了便于说明,以红、蓝两色识别不同的VLAN,在实际使用中则是用“VLAN ID”来区分的。

  2.直观地描述VLAN

  如果要更为直观地描述VLAN的话,我们可以把它理解为将一台交换机在逻辑上分割成了数台交换机。在一台交换机上生成红、蓝两个VLAN,也可以看作是将一台交换机换做一红一蓝两台虚拟的交换机。

  

  在红、蓝两个VLAN之外生成新的VLAN时,可以想象成又添加了新的交换机。

  但是,VLAN生成的逻辑上的交换机是互不相通的。因此,在交换机上设置VLAN后,如果未做其他处理,VLAN间是无法通信的。

  明明接在同一台交换机上,但却偏偏无法通信——这个事实也许让人难以接受。但它既是VLAN方便易用的特征,又是使VLAN令人难以理解的原因。

  3. 需要VLAN间通信时怎么办

  那么,当我们需要在不同的VLAN间通信时又该如何是好呢?

  请大家再次回忆一下:VLAN是广播域。而通常两个广播域之间由路由器连接,广播域之间来往的数据包都是由路由器中继的。因此,VLAN间的通信也需要路由器提供中继服务,这被称作“VLAN间路由”。

  VLAN间路由,可以使用普通的路由器,也可以使用三层交换机。其中的具体内容,等有机会再细说吧。在这里希望大家先记住不同VLAN间互相通信时需要用到路由功能。

  VLAN的访问链接(Access Link)

  1.交换机的端口类型

  交换机的端口,可以分为以下两种:

  (1)访问链接(Access Link)

  (2)汇聚链接(Trunk Link)

  接下来就让我们来依次学习这两种不同端口的特征。这一讲,首先学习“访问链接”。

  2.访问链接

  访问链接,指的是“只属于一个VLAN,且仅向该VLAN转发数据帧”的端口。在大多数情况下,访问链接所连的是客户机。

  通常设置VLAN的顺序是:

  (1)生成VLAN

  (2)设定访问链接(决定各端口属于哪一个VLAN)

  设定访问链接的手法,可以是事先固定的、也可以是根据所连的计算机而动态改变设定。前者被称为“静态VLAN”、后者自然就是“动态VLAN”了。

  ● 静态VLAN——基于端口

  静态VLAN又被称为基于端口的VLAN(PortBased VLAN)。顾名思义,就是明确指定各端口属于哪个VLAN的设定方法。

  

  由于需要一个个端口地指定,因此当网络中的计算机数目超过一定数字(比如数百台)后,设定操作就会变得烦杂无比。并且,客户机每次变更所连端口,都必须同时更改该端口所属VLAN的设定——这显然不适合那些需要频繁改变拓补结构的网络。

  ● 动态VLAN

  另一方面,动态VLAN则是根据每个端口所连的计算机,随时改变端口所属的VLAN。这就可以避免上述的更改设定之类的操作。动态VLAN可以大致分为3类:

  (1)基于MAC地址的VLAN(MAC Based VLAN)

  (2)基于子网的VLAN(Subnet Based VLAN)

  (3)基于用户的VLAN(User Based VLAN)

  其间的差异,主要在于根据OSI参照模型哪一层的信息决定端口所属的VLAN。

  ● 基于MAC地址的VLAN

  基于MAC地址的VLAN,就是通过查询并记录端口所连计算机上网卡的MAC地址来决定端口的所属。假定有一个MAC地址“A”被交换机设定为属于VLAN “10”,那么不论MAC地址为“A”的这台计算机连在交换机哪个端口,该端口都会被划分到VLAN 10中去。计算机连在端口1时,端口1属于VLAN 10;而计算机连在端口2时,则是端口2属于VLAN 10。

  

  由于是基于MAC地址决定所属VLAN的,因此可以理解为这是一种在OSI的第二层设定访问链接的办法。

  但是,基于MAC地址的VLAN,在设定时必须调查所连接的所有计算机的MAC地址并加以登录。而且如果计算机交换了网卡,还是需要更改设定。

  ● 基于IP地址的VLAN

  基于子网的VLAN,则是通过所连计算机的IP地址,来决定端口所属VLAN的。不像基于MAC地址的VLAN,即使计算机因为交换了网卡或是其他原因导致MAC地址改变,只要它的IP地址不变,就仍可以加入原先设定的VLAN。

  

  因此,与基于MAC地址的VLAN相比,能够更为简便地改变网络结构。IP地址是OSI参照模型中第三层的信息,所以我们可以理解为基于子网的VLAN是一种在OSI的第三层设定访问链接的方法。

  基于用户的VLAN,则是根据交换机各端口所连的计算机上当前登录的用户,来决定该端口属于哪个VLAN。这里的用户识别信息,一般是计算机操作系统登录的用户,比如可以是Windows域中使用的用户名。这些用户名信息,属于OSI第四层以上的信息。

  总的来说,决定端口所属VLAN时利用的信息在OSI中的层面越高,就越适于构建灵活多变的网络。

  VLAN的汇聚链接(Trunk Link)

  1.需要设置跨越多台交换机的VLAN时……

  到此为止,我们学习的都是使用单台交换机设置VLAN时的情况。那么,如果需要设置跨越多台交换机的VLAN时又如何呢?

  在规划企业级网络时,很有可能会遇到隶属于同一部门的用户分散在同一座建筑物中的不同楼层的情况,这时可能就需要考虑到如何跨越多台交换机设置VLAN的问题了。假设有如下图所示的网络,且需要将不同楼层的A、C和B、D设置为同一个VLAN。

  

  这时最关键的就是“交换机1和交换机2该如何连接才好呢?”

  最简单的方法,自然是在交换机1和交换机2上各设一个红、蓝VLAN专用的接口并互联了。

  

  但是,这个办法从扩展性和管理效率来看都不好。例如,在现有网络基础上再新建VLAN时,为了让这个VLAN能够互通,就需要在交换机间连接新的网线。建筑物楼层间的纵向布线是比较麻烦的,一般不能由基层管理人员随意进行。并且,VLAN越多,楼层间(严格地说是交换机间)互联所需的端口也越来越多,交换机端口的利用效率低是对资源的一种浪费、也限制了网络的扩展。

  为了避免这种低效率的连接方式,人们想办法让交换机间互联的网线集中到一根上,这时使用的就是汇聚链接(Trunk Link)。

  2.何谓汇聚链接?

  汇聚链接(Trunk Link)指的是能够转发多个不同VLAN的通信的端口。

  汇聚链路上流通的数据帧,都被附加了用于识别分属于哪个VLAN的特殊信息。

  现在再让我们回过头来考虑一下刚才那个网络如果采用汇聚链路又会如何呢?用户只需要简单地将交换机间互联的端口设定为汇聚链接就可以了。这时使用的网线还是普通的UTP线,而不是什么其他的特殊布线。图例中是交换机间互联,因此需要用交叉线来连接。

  接下来,让我们具体看看汇聚链接是如何实现跨越交换机间的VLAN的。

  A发送的数据帧从交换机1经过汇聚链路到达交换机2时,在数据帧上附加了表示属于红色VLAN的标记。

  交换机2收到数据帧后,经过检查VLAN标识发现这个数据帧是属于红色VLAN的,因此去除标记后根据需要将复原的数据帧只转发给其他属于红色VLAN的端口。这时的转送,是指经过确认目标MAC地址并与MAC地址列表比对后只转发给目标MAC地址所连的端口。只有当数据帧是一个广播帧、多播帧或是目标不明的帧时,它才会被转发到所有属于红色VLAN的端口。

  蓝色VLAN发送数据帧时的情形也与此相同。

  

  通过汇聚链路时附加的VLAN识别信息,有可能支持标准的“IEEE 802.1Q”协议,也可能是Cisco产品独有的“ISL(Inter Switch Link)”。如果交换机支持这些规格,那么用户就能够高效率地构筑横跨多台交换机的VLAN。

  另外,汇聚链路上流通着多个VLAN的数据,自然负载较重。因此,在设定汇聚链接时,有一个前提就是必须支持100Mbps以上的传输速度。

  另外,默认条件下,汇聚链接会转发交换机上存在的所有VLAN的数据。换一个角度看,可以认为汇聚链接(端口)同时属于交换机上所有的VLAN。由于实际应用中很可能并不需要转发所有VLAN的数据,因此为了减轻交换机的负载、也为了减少对带宽的浪费,我们可以通过用户设定限制能够经由汇聚链路互联的VLAN。

  关于IEEE 802.1Q和ISL的具体内容,将在下一讲中提到。

  3.访问链接的总结

  综上所述,设定访问链接的手法有静态VLAN和动态VLAN两种,其中动态VLAN又可以继续细分成几个小类。

  其中基于子网的VLAN和基于用户的VLAN有可能是网络设备厂商使用独有的协议实现的,不同厂商的设备之间互联有可能出现兼容性问题;因此在选择交换机时,一定要注意事先确认。

  下表总结了静态VLAN和动态VLAN的相关信息。

  种类解说

  静态VLAN(基于端口的VLAN)将交换机的各端口固定指派给VLAN

  动态VLAN基于MAC地址的VLAN根据各端口所连计算机的MAC地址设定

  基于子网的VLAN根据各端口所连计算机的IP地址设定

  基于用户的VLAN根据端口所连计算机上登录用户设定

  VLAN的汇聚方式——IEEE802.1Q与ISL

  1.汇聚方式

  在交换机的汇聚链接上,可以通过对数据帧附加VLAN信息,构建跨越多台交换机的VLAN。

  附加VLAN信息的方法,最具有代表性的有:

  (1)IEEE 802.1Q

  (2)ISL

  现在就让我们看看这两种协议分别如何对数据帧附加VLAN信息。

  2.IEEE 802.1Q

  IEEE 802.1Q,俗称“Dot One Q”,是经过IEEE认证的对数据帧附加VLAN识别信息的协议。

  在此,请大家先回忆一下以太网数据帧的标准格式。

  IEEE 802.1Q所附加的VLAN识别信息,位于数据帧中“发送源MAC地址”与“类别域”(Type Field)之间。具体内容为2字节的TPID(Tag Protocol IDentifier)和2字节的TCI(Tag Control Information),共计4字节。

  在数据帧中添加了4字节的内容,那么CRC值自然也会有所变化。这时数据帧上的CRC是插入TPID、TCI后,对包括它们在内的整个数据帧重新计算后所得的值。

  

  而当数据帧离开汇聚链路时,TPID和TCI会被去除,这时还会进行一次CRC的重新计算。

  TPID字段在以太网报文中所处位置与不带VLAN Tag的报文中协议类型字段所处位置相同。TPID的值固定为0x8100,它标示网络帧承载的802.1Q类型,交换机通过它来确定数据帧内附加了基于IEEE 802.1Q的VLAN信息。而实质上的VLAN ID,是TCI中的12位元。由于总共有12位,因此最多可供识别4096个VLAN。

  基于IEEE 802.1Q附加的VLAN信息,就像在传递物品时附加的标签。因此,它也被称作“标签型VLAN”(Tagging VLAN)。

  3.ISL(Inter Switch Link)

  ISL,是Cisco产品支持的一种与IEEE 802.1Q类似的、用于在汇聚链路上附加VLAN信息的协议。

  使用ISL后,每个数据帧头部都会被附加26字节的“ISL包头(ISL Header)”,并且在帧尾带上通过对包括ISL包头在内的整个数据帧进行计算后得到的4字节CRC值。换而言之,就是总共增加了30字节的信息。

  在使用ISL的环境下,当数据帧离开汇聚链路时,只要简单地去除ISL包头和新CRC就可以了。由于原先的数据帧及其CRC都被完整保留,因此无需重新计算CRC。

  

  ISL有如用ISL包头和新CRC将原数据帧整个包裹起来,因此也被称为“封装型VLAN”(Encapsulated VLAN)。

  需要注意的是,不论是IEEE802.1Q的“Tagging VLAN”,还是ISL的“Encapsulated VLAN”,都不是很严密的称谓。不同的书籍与参考资料中,上述词语有可能被混合使用,因此需要大家在学习时格外注意。

  并且由于ISL是Cisco独有的协议,因此只能用于Cisco网络设备之间的互联。

  VLAN间路由

  1.VLAN间路由的必要性

  根据目前为止学习的知识,我们已经知道两台计算机即使连接在同一台交换机上,只要所属的VLAN不同就无法直接通信。接下来我们将要学习的就是如何在不同的VLAN间进行路由,使分属不同VLAN的主机能够互相通信。

  首先,先来复习一下为什么不同VLAN间不通过路由就无法通信。在LAN内的通信,必须在数据帧头中指定通信目标的MAC地址。而为了获取MAC地址,TCP/IP协议下使用的是ARP。ARP解析MAC地址的方法,则是通过广播。也就是说,如果广播报文无法到达,那么就无从解析MAC地址,亦即无法直接通信。

  计算机分属不同的VLAN,也就意味着分属不同的广播域,自然收不到彼此的广播报文。因此,属于不同VLAN的计算机之间无法直接互相通信。为了能够在VLAN间通信,需要利用OSI参照模型中更高一层——网络层的信息(IP地址)来进行路由。关于路由的具体内容,以后有机会再详细解说吧。

  路由功能,一般主要由路由器提供。但在今天的局域网里,我们也经常利用带有路由功能的交换机——三层交换机(Layer 3 Switch)来实现。接下来就让我们分别看看使用路由器和三层交换机进行VLAN间路由时的情况。

  2.使用路由器进行VLAN间路由

  在使用路由器进行VLAN间路由时,与构建横跨多台交换机的VLAN时的情况类似,我们还是会遇到“该如何连接路由器与交换机”这个问题。路由器和交换机的接线方式,大致有以下两种:

  (1)将路由器与交换机上的每个VLAN分别连接

  (2)不论VLAN有多少个,路由器与交换机都只用一条网线连接

  最容易想到的,当然还是“把路由器和交换机以VLAN为单位分别用网线连接”了。将交换机上用于和路由器互联的每个端口设为访问链接(Access Link),然后分别用网线与路由器上的独立端口互联。如下图所示,交换机上有2个VLAN,那么就需要在交换机上预留2个端口用于与路由器互联;路由器上同样需要有2个端口;两者之间用2条网线分别连接。

  

  如果采用这个办法,大家应该不难想象它的扩展性很成问题。每增加一个新的VLAN,都需要消耗路由器的端口和交换机上的访问链接,而且还需要重新布设一条网线。而路由器,通常不会带有太多LAN接口的。新建VLAN时,为了对应增加的VLAN所需的端口,就必须将路由器升级成带有多个LAN接口的高端产品,这部分成本、还有重新布线所带来的开销,都使得这种接线法成为一种不受欢迎的办法。

  那么,第二种办法“不论VLAN数目多少,都只用一条网线连接路由器与交换机”呢?当使用一条网线连接路由器与交换机、进行VLAN间路由时,需要用到汇聚链接。

  具体实现过程为:首先将用于连接路由器的交换机端口设为汇聚链接(Trunk Link),而路由器上的端口也必须支持汇聚链路。双方用于汇聚链路的协议自然也必须相同。接着在路由器上定义对应各个VLAN的“子接口”(Sub Interface)。尽管实际与交换机连接的物理端口只有一个,但在理论上我们可以把它分割为多个虚拟端口。

  VLAN将交换机从逻辑上分割成了多台,因而用于VLAN间路由的路由器,也必须拥有分别对应各个VLAN的虚拟接口。

  

  采用这种方法的话,即使之后在交换机上新建VLAN,仍只需要一条网线连接交换机和路由器。用户只需要在路由器上新设一个对应新VLAN的子接口就可以了。与前面的方法相比,扩展性要强得多,也不用担心需要升级LAN接口数不足的路由器或是重新布线。

  3.同一VLAN内的通信

  接下来,我们继续学习使用汇聚链路连接交换机与路由器时,VLAN间路由是如何进行的。如下图所示,为各台计算机以及路由器的子接口设定IP地址。

  

  红色VLAN(VLAN ID=1)的网络地址为192.168.1.0/24,蓝色VLAN(VLAN ID=2)的网络地址为192.168.2.0/24。各计算机的MAC地址分别为A/B/C/D,路由器汇聚链接端口的MAC地址为R。交换机通过对各端口所连计算机MAC地址的学习,生成如下的MAC地址列表。

  首先考虑计算机A与同一VLAN内的计算机B之间通信时的情形。

  计算机A发出ARP请求信息,请求解析B的MAC地址。交换机收到数据帧后,检索MAC地址列表中与收信端口同属一个VLAN的表项。结果发现,计算机B连接在端口2上,于是交换机将数据帧转发给端口2,最终计算机B收到该帧。收发信双方同属一个VLAN之内的通信,一切处理均在交换机内完成。

  

  4.不同VLAN间的通信

  接下来是这一讲的核心内容,不同VLAN间的通信。让我们来考虑一下计算机A与计算机C之间通信时的情况。

  

  计算机A从通信目标的IP地址(192.168.2.1)得出C与本机不属于同一个网段。因此会向设定的默认网关(DefaultGateway,GW)转发数据帧。在发送数据帧之前,需要先用ARP获取路由器的MAC地址。

  得到路由器的MAC地址R后,接下来就是按图中所示的步骤发送往C去的数据帧。①的数据帧中,目标MAC地址是路由器的地址R、但内含的目标IP地址仍是最终要通信的对象C的地址。这一部分的内容,涉及到局域网内经过路由器转发时的通信步骤,有机会再详细解说吧。

  交换机在端口1上收到①的数据帧后,检索MAC地址列表中与端口1同属一个VLAN的表项。由于汇聚链路会被看作属于所有的VLAN,因此这时交换机的端口6也属于被参照对象。这样交换机就知道往MAC地址R发送数据帧,需要经过端口6转发。

  从端口6发送数据帧时,由于它是汇聚链接,因此会被附加上VLAN识别信息。由于原先是来自红色VLAN的数据帧,因此如图中②所示,会被加上红色VLAN的识别信息后进入汇聚链路。路由器收到②的数据帧后,确认其VLAN识别信息,由于它是属于红色VLAN的数据帧,因此交由负责红色VLAN的子接口接收。

  接着,根据路由器内部的路由表,判断该向哪里中继。

  由于目标网络192.168.2.0/24是蓝色VLAN,,且该网络通过子接口与路由器直连,因此只要从负责蓝色VLAN的子接口转发就可以了。这时,数据帧的目标MAC地址被改写成计算机C的目标地址;并且由于需要经过汇聚链路转发,因此被附加了属于蓝色VLAN的识别信息。这就是图中③的数据帧。

  交换机收到③的数据帧后,根据VLAN标识信息从MAC地址列表中检索属于蓝色VLAN的表项。由于通信目标——计算机C连接在端口3上、且端口3为普通的访问链接,因此交换机会将数据帧去除VLAN识别信息后(数据帧④)转发给端口3,最终计算机C才能成功地收到这个数据帧。

  进行VLAN间通信时,即使通信双方都连接在同一台交换机上,也必须经过:“发送方——交换机——路由器——交换机——接收方”这样一个流程。

  三层交换机

  1.使用路由器进行VLAN间路由时的问题

  现在,我们知道只要能提供VLAN间路由,就能够使分属不同VLAN的计算机互相通信。但是,如果使用路由器进行VLAN间路由的话,随着VLAN之间流量的不断增加,很可能导致路由器成为整个网络的瓶颈。

  交换机使用被称为ASIC(ApplicationSpecified Integrated Circuit)的专用硬件芯片处理数据帧的交换操作,在很多机型上都能实现以缆线速度(Wired Speed)交换。而路由器,则基本上是基于软件处理的。即使以缆线速度接收到数据包,也无法在不限速的条件下转发出去,因此会成为速度瓶颈。就VLAN间路由而言,流量会集中到路由器和交换机互联的汇聚链路部分,这一部分尤其特别容易成为速度瓶颈。并且从硬件上看,由于需要分别设置路由器和交换机,在一些空间狭小的环境里可能连设置的场所都成问题。

  2.三层交换机(Layer 3 Switch)

  为了解决上述问题,三层交换机应运而生。三层交换机,本质上就是“带有路由功能的(二层)交换机”。路由属于OSI参照模型中第三层网络层的功能,因此带有第三层路由功能的交换机才被称为“三层交换机”。

  关于三层交换机的内部结构,可以参照下面的简图。

  

  在一台本体内,分别设置了交换机模块和路由器模块;而内置的路由模块与交换模块相同,使用ASIC硬件处理路由。因此,与传统的路由器相比,可以实现高速路由。并且,路由与交换模块是汇聚链接的,由于是内部连接,可以确保相当大的带宽。

  ● 使用三层交换机进行VLAN间路由(VLAN内通信)

  在三层交换机内部数据究竟是怎样传播的呢?基本上,它和使用汇聚链路连接路由器与交换机时的情形相同。

  假设有如下图所示的4台计算机与三层交换机互联。当使用路由器连接时,一般需要在LAN接口上设置对应各VLAN的子接口;而三层交换机则是在内部生成“VLAN接口”(VLAN Interface)。VLAN接口,是用于各VLAN收发数据的接口。(注:在Cisco的Catalyst系列交换机上,VLAN Interface被称为SVI——Switched Virtual Interface)

  

  为了与使用路由器进行VLAN间路由对比,让我们同样来考虑一下计算机A与计算机B之间通信时的情况。首先是目标地址为B的数据帧被发到交换机;通过检索同一VLAN的MAC地址列表发现计算机B连在交换机的端口2上;因此将数据帧转发给端口2。

  ● 使用三层交换机进行VLAN间路由(VLAN间通信)

  接下来设想一下计算机A与计算机C间通信时的情形。针对目标IP地址,计算机A可以判断出通信对象不属于同一个网络,因此向默认网关发送数据(Frame 1)。

  交换机通过检索MAC地址列表后,经由内部汇聚链接,将数据帧转发给路由模块。在通过内部汇聚链路时,数据帧被附加了属于红色VLAN的VLAN识别信息(Frame 2)。

  路由模块在收到数据帧时,先由数据帧附加的VLAN识别信息分辨出它属于红色VLAN,据此判断由红色VLAN接口负责接收并进行路由处理。因为目标网络192.168.2.0/24是直连路由器的网络、且对应蓝色VLAN;因此,接下来就会从蓝色VLAN接口经由内部汇聚链路转发回交换模块。在通过汇聚链路时,这次数据帧被附加上属于蓝色VLAN的识别信息(Frame 3)。

  交换机收到这个帧后,检索蓝色VLAN的MAC地址列表,确认需要将它转发给端口3。由于端口3是通常的访问链接,因此转发前会先将VLAN识别信息去除(Frame 4)。最终,计算机C成功地收到交换机转发来的数据帧。

  

  整体的流程,与使用外部路由器时的情况十分相似——都需要经过“发送方→交换模块→路由模块→交换模块→接收方”。

  加速VLAN间通信的手段

  1.流(Flow)

  根据到此为止的学习,我们已经知道VLAN间路由,必须经过外部的路由器或是三层交换机的内置路由模块。但是,有时并不是所有的数据都需要经过路由器(或路由模块)。

  例如,使用FTP(File Transfer Protocol)传输容量为数MB以上的较大的文件时,由于MTU的限制,IP协议会将数据分割成小块后传输、并在接收方重新组合。这些被分割的数据,“发送的目标”是完全相同的。发送目标相同,也就意味着同样的目标IP地址、目标端口号(注:特别强调一下,这里指的是TCP/UDP端口)。自然,源IP地址、源端口号也应该相同。这样一连串的数据流被称为“流”(Flow)。

  只要将流最初的数据正确地路由以后,后继的数据理应也会被同样地路由。

  据此,后继的数据不再需要路由器进行路由处理;通过省略反复进行的路由操作,可以进一步提高VLAN间路由的速度。

  

  2.加速VLAN间路由的机制

  接下来,让我们具体考虑一下该如何使用三层交换机进行高速VLAN间路由。

  首先,整个流的第一块数据,照常由交换机转发→路由器路由→再次由交换机转发到目标所连端口。这时,将第一块数据路由的结果记录到缓存里保存下来。需要记录的信息有:

  (1)目标IP地址

  (2)源IP地址

  (3)目标TCP/UDP端口号

  (4)源TCP/UDP端口号

  (5)接收端口号(交换机)

  (6)转发端口号(交换机)

  (7)转发目标MAC地址

  等等。

  同一个流的第二块以后的数据到达交换机后,直接通过查询先前保存在缓存中的信息查出“转发端口号”后就可以转发给目标所连端口了。

  这样一来,就不需要再一次次经由内部路由模块中继,而仅凭交换机内部的缓存信息就足以判断应该转发的端口。

  这时,交换机会对数据帧进行由路由器中继时相似的处理,例如改写MAC地址、IP包头中的TTL和Check Sum校验码信息等。

  

  通过在交换机上缓存路由结果,实现了以缆线速度(Wired Speed)接收发送方传输来数据的数据、并且能够全速路由、转发给接收方。

  需要注意的是,类似的加速VLAN间路由的手法多由各厂商独有的技术所实现,并且该功能的称谓也因厂商而异。例如,在Cisco的Catalyst系列交换机上,这种功能被称为“多层交换”(Multi Layer Switching)。另外,除了三层交换机的内部路由模块,外部路由器中的某些机型也支持类似的高速VLAN间路由机制。

  传统型路由器存在的意义

  1.路由器的必要性

  三层交换机的价格,在问世之初非常昂贵,但是现在它们的价格已经下降了许多。目前国外一些廉价机型的售价,折合成人民币后仅为一万多元,而且还在继续下降中。

  既然三层交换机能够提供比传统型路由器更为高速的路由处理,那么网络中还有使用路由器的必要吗?

  答案是:“是”。

  使用路由器的必要性,主要表现在以下几个方面:

  (1)用于与WAN连接

  三层交换机终究是“交换机”。也就是说,绝大多数机型只配有LAN(以太网)接口。在少数高端交换机上也有用于连接WAN的串行接口或是ATM接口,但在大多数情况下,连接WAN还是需要用到路由器。

  (2)保证网络安全

  在三层交换机上,通过数据包过滤也能确保一定程度的网络安全。但是使用路由器所提供的各种网络安全功能,用户可以构建更为安全可靠的网络。

  路由器提供的网络安全功能中,除了最基本的数据包过滤功能外,还能基于IPSec构建VPN(VirtualPrivate Network)、利用RADIUS进行用户认证等等。

  (3)支持除TCP/IP以外的异构网络架构

  尽管TCP/IP已经成为当前网络协议架构的主流,但还有不少网络利用Novell Netware下的IPX/SPX或Macintosh下的AppleTalk等网络协议。三层交换机中,除了部分高端机型外基本上还只支持TCP/IP。因此,在需要使用除TCP/IP之外其他网络协议的环境下,路由器还是必不可少的。

  注:在少数高端交换机上,也能支持上述路由器的功能。例如Cisco的Catalyst 6500系列,就可以选择与WAN连接的接口模块;还有可选的基于IPSec实现VPN的模块;并且也能支持TCP/IP以外的其他网络协议。

  2.路由器和交换机配合构建LAN的实例

  下面让我们来看一个路由器和交换机搭配构建LAN的实例。

  

  利用在各楼层配置的二层交换机定义VLAN,连接TCP/IP客户计算机。各楼层间的VLAN间通信,利用三层交换机的高速路由加以实现。如果网络环境要求高可靠性,还可以考虑冗余配置三层交换机。

  与WAN的连接,则通过带有各种网络接口的路由器进行。并且,通过路由器的数据包过滤和VPN等功能实现网络安全。此外,使用路由器还能支持Novell Netware等TCP/IP之外的网络。

  只有在充分掌握了二层、三层交换机以及传统路由器的基础上,才能做到物竞其用,构筑出高效率、高性价比的网络。

  使用VLAN设计局域网

  1.使用VLAN设计局域网的特点

  通过使用VLAN构建局域网,用户能够不受物理链路的限制而自由地分割广播域。

  另外,通过先前提到的路由器与三层交换机提供的VLAN间路由,能够适应灵活多变的网络构成。

  但是,由于利用VLAN容易导致网络构成复杂化,因此也会造成整个网络的组成难以把握。

  可以这样说,在利用VLAN时,除了有“网络构成灵活多变”这个优点外,还搭配着“网络构成复杂化”这个缺点。

  下面,就让我们来看看具体的实例。

  2.不使用VLAN的局域网中网络构成的改变

  假设有如图所示的由1台路由器、2台交换机构成的“不使用VLAN构建”的网络。

  

  图中的路由器,带有2个LAN接口。左侧的网络是192.168.1.0/24,右侧是192.168.2.0/24。

  现在如果想将192.168.1.0/24这个网络上的计算机A转移到192.168.2.0/24上去,就需要改变物理连接、将A接到右侧的交换机上。

  并且,当需要新增一个地址为192.168.3.0/24的网络时,还要在路由器上再占用一个LAN接口并添置一台交换机。而由于这台路由器上只带了2个LAN接口,因此为了新增网络还必须将路由器升级为带有3个以上LAN接口的产品。

  3.使用VLAN的局域网中网络构成的改变

  接下来再假设有一个由1台路由器、2台交换机构成的“使用VLAN”的局域网。交换机与交换机、交换机与路由器之间均为汇聚链路;并且假设192.168.1.0/24对应红色VLAN、192.168.2.0/24对应蓝色VLAN。

  

  需要将连接在交换机1上192.168.1.0/24这个网段的计算机A转属192.168.2.0/24时,无需更改物理布线。只要在交换机上生成蓝色VLAN,然后将计算机A所连的端口1加入到蓝色VLAN中去,使它成为访问链接即可。

  然后,根据需要设定计算机A的IP地址、默认网关等信息就可以了。如果IP地址相关的设定是由DHCP获取的,那么在客户机方面无需进行任何设定修改,就可以在不同网段间移动。

  利用VLAN后,我们可以在免于改动任何物理布线的前提下,自由进行网络的逻辑设计。如果所处的工作环境恰恰需要经常改变网络布局,那么利用VLAN的优势就非常明显了。

  并且,当需要新增一个地址为192.168.3.0/24的网段时,也只需要在交换机上新建一个对应192.168.3.0/24的VLAN,并将所需的端口加入它的访问链路就可以了。

  如果网络环境中还需要利用外部路由器,则只要在路由器的汇聚端口上新增一个子接口的设定就可以完成全部操作,而不需要消耗更多的物理接口(LAN接口)。要使用的是三层交换机内部的路由模块,则只需要新设一个VLAN接口即可。

  网络环境的成长,往往是难以预测的,很可能经常会出现需要分割现有网络或是增加新网络的情况。而充分活用VLAN后,就可以轻易地解决这些问题。

  4.利用VLAN而导致的网络结构复杂化

  虽然利用VLAN可以灵活地构建网络,但是同时,它也带来了网络结构复杂化的问题。

  特别是由于数据流纵横交错,一旦发生故障时,准确定位并排除故障会比较困难。

  为了便于理解数据流向的复杂化,假设有下图所示的网络。计算机A向计算机C发送数据时,数据流的整体走向如下:

  计算机A→交换机1→路由器→交换机1→交换机2→计算机C

  

  

  首先计算机A向交换机1送出数据(①),其后数据被转发给路由器(②)进行VLAN间路由。路由后的数据,再从汇聚链路返回交换机1(③)。由于通信目标计算机C并不直连在交换机1上,因此还需要经过汇聚链路转发到交换机2(④)。在交换机2上,数据最终被转发到C所连的端口2上,这才完成整个流程(⑤)。

  在这个例子中,仅由2台交换机构成网络,其数据流已经如此复杂,如果构建横跨多台交换机的VLAN的话,每个数据流的流向显然会更加难以把握。

  5. 网络的逻辑结构与物理结构

  为了对应日渐复杂化的数据流,管理员需要从“逻辑结构”与“物理结构”两方面入手,把握好网络的现状。

  物理结构,指的是从物理层和数据链路层观察到的网络的现状,表示了网络的物理布线形态和VLAN的设定等等。

  而逻辑结构,则表示从网络层以上的层面观察到的网络结构。下面我们就试着以路由器为中心分析一个IP网络的逻辑结构。

  还是先前的那个例子,描绘了布线形态和VLAN设定的“物理结构”如下图所示。

  

  分析这个物理结构并转换成以路由器为中心的逻辑结构后,会得到如下的逻辑结构图。当我们需要进行路由或是数据包过滤的设定时,都必须在逻辑结构的基础上进行。

  

  把握这两种网络结构图的区别是十分重要的,特别是在VLAN和三层交换机大行其道的现代企业级网络当中。

查看详情

vlan知识

展开查看更多

vlan技术

怎么在Linux上划分VLAN

怎么在Linux上划分VLAN

在某些场景中,我们希望在Linux服务器(CentOS / RHEL)上的同一网卡分配来自不同VLAN的多个ip。这可以通过启用VLAN标记接口来实现,...

2024-10-24 标签:服务器网卡VLAN 131 0

车载以太网交换机入门基本功(4)—优先级设计与VLAN测试

车载以太网交换机入门基本功(4)—优先级设计与VLAN测试

VLAN通过报文Tag、交换机端口属性、交换机端口过滤功能得以实现,并通过优先级和队列实现转发的有效调度。为了验证交换机芯片的功能实现,需要参考OPEN...

2024-09-06 标签:交换机VLAN车载以太网 298 0

车载以太网交换机入门基本功(3)—VLAN 转发

车载以太网交换机入门基本功(3)—VLAN 转发

本文将介绍携带Tag报文在VLAN下的转发过程。而在实际转发过程中,交换机的端口属性起到关键作用。

2024-08-21 标签:以太网交换机VLAN 3439 0

工业交换机VLAN配置中Tagged与Untagged端口有什么不同

工业交换机VLAN配置中Tagged与Untagged端口有什么不同

Tagged端口与Untagged端口各有其优势和适用场景。在构建工业交换机网络时,网络管理员应根据实际情况进行灵活选择和配置。通过合理利用这两种端口类...

2024-08-13 标签:交换机局域网VLAN 891 0

利用Python脚本登录到交换机并创建VLAN

本文将详细介绍如何利用Python脚本登录到交换机并创建VLAN。

2024-08-12 标签:交换机VLANpython 516 0

MUX VLAN的基本概念和工作原理

MUX VLAN的基本概念和工作原理

MUX VLAN,或称 Multiplex VLAN,是一种通过 VLAN 技术进行网络资源控制的高级机制。它可以通过 VLAN 间通信和二层流量隔离,...

2024-07-16 标签:交换机网络VLAN 1587 0

车载以太网交换机入门基本功(2)— 初识VLAN

车载以太网交换机入门基本功(2)— 初识VLAN

这么方便的VLAN,究竟是用了什么“魔法”做到的呢?

2024-07-16 标签:交换机局域网VLAN 917 0

提升工业网络安全与性能:VLAN技术详解

提升工业网络安全与性能:VLAN技术详解

在网络技术的不断发展之下,VLAN(虚拟局域网)作为一种重要的网络分割和管理技术,早已得到了广泛应用。VLAN不仅提高了网络的安全性和效率,还为网络管理...

2024-06-21 标签:VLAN虚拟局域网工业网络 2526 0

交换机是干什么的 交换机的四种模式?

交换机是一种网络设备,它在计算机网络中起着至关重要的作用。它主要用于连接不同的设备,如计算机、打印机、路由器等,

2024-05-28 标签:交换机路由器VLAN 1479 0

TSMaster VLAN配置方法

TSMaster VLAN配置方法

VLAN是虚拟局域网,利用VLAN,我们可以自由设计广播域的构成,同时提高网络设计的自由度。本文将介绍如何在TSMaster上配置VLAN信息,并结合T...

2024-05-18 标签:以太网VLANMASTER 434 0

查看更多>>

vlan资讯

一文看懂VLAN和VXLAN

一文看懂VLAN和VXLAN

VLAN(Virtual Local Area Network,虚拟局域网)和VXLAN(Virtual Extensible LAN,虚拟可扩展局域网...

2024-11-21 标签:VLANVxLAN 124 0

VLAN 故障排除方法

VLAN(虚拟局域网)故障排除是确保网络稳定性和性能的关键任务。以下是一些常见的VLAN故障排除方法: 一、基本步骤 故障定位 首先,需要确定故障的具体...

2024-11-19 标签:交换机局域网VLAN 121 0

VLAN 交换机与路由器的区别

在现代网络架构中,VLAN交换机和路由器是构建高效、安全网络的基石。 VLAN交换机 VLAN交换机是一种多端口的网络设备,它能够识别和过滤不同VLAN...

2024-11-19 标签:交换机路由器VLAN 103 0

VLAN 实施对网络性能的影响

VLAN(虚拟局域网)的实施对网络性能有着显著的影响,这些影响主要体现在以下几个方面: 一、网络性能的提升 减少广播域和冲突域 VLAN通过将网络划分为...

2024-11-19 标签:带宽网络局域网 97 0

VLAN 概念解析及使用场景

1. VLAN 概念解析 VLAN(Virtual Local Area Network,虚拟局域网)是一种在交换网络中划分不同广播域的技术。VLAN ...

2024-11-19 标签:局域网VLAN端口 102 0

VLAN 与传统网络架构的比较

VLAN(虚拟局域网)与传统网络架构在多个方面存在显著差异。以下是对这两者的比较: 一、定义与基本概念 VLAN 定义:VLAN是Virtual Loc...

2024-11-19 标签:硬件局域网VLAN 151 0

如何使用 VLAN 进行网络隔离

在现代网络架构中,VLAN(虚拟局域网)技术已成为实现网络隔离和优化的关键工具。 1. VLAN的基本概念 VLAN是一种在交换机上创建的逻辑网络分割技...

2024-11-19 标签:交换机VLANGUI 169 0

VLAN 配置中的常见问题解决

VLAN(虚拟局域网)配置中的常见问题涉及多个方面,包括配置错误、网络互通问题、设备连接故障等。以下是对这些问题的分析和解决方法: 一、配置错误 管理V...

2024-11-19 标签:控制器局域网VLAN 275 0

如何配置 VLAN 以提高网络安全

配置虚拟局域网(VLAN)是一种在交换网络中提高网络安全的有效方法。VLAN通过将网络划分为多个逻辑分割,可以限制不同用户组之间的通信,从而减少潜在的安...

2024-11-19 标签:交换机局域网网络安全 205 0

基于DPU的Openstack裸金属服务网络解决方案

基于DPU的Openstack裸金属服务网络解决方案

1.  方案背景和挑战 裸金属服务器作为一类特别设计的计算类云服务,向最终用户提供了云端部署的专属物理服务器,这意味着最终用户不再需要与其他租户共享硬件...

2024-10-22 标签:云计算VLANDPU 153 0

查看更多>>

vlan数据手册

相关标签

相关话题

换一批
  • IOT
    IOT
    +关注
    IoT是Internet of Things的缩写,字面翻译是“物体组成的因特网”,准确的翻译应该为“物联网”。物联网(Internet of Things)又称传感网,简要讲就是互联网从人向物的延伸。
  • 海思
    海思
    +关注
  • STM32F103C8T6
    STM32F103C8T6
    +关注
    STM32F103C8T6是一款集成电路,芯体尺寸为32位,程序存储器容量是64KB,需要电压2V~3.6V,工作温度为-40°C ~ 85°C。
  • 数字隔离
    数字隔离
    +关注
    数字隔离技术常用于工业网络环境的现场总线、军用电子系统和航空航天电子设备中,尤其是一些应用环境比较恶劣的场合。数字隔离电路主要用于数字信号和开关量信号的传输。另一个重要原因是保护器件(或人)免受高电压的危害。本文详细介绍了数字隔离器工作原理及特点,选型及应用,各类数字隔离器件性能比较等内容。
  • 硬件工程师
    硬件工程师
    +关注
    硬件工程师Hardware Engineer职位 要求熟悉计算机市场行情;制定计算机组装计划;能够选购组装需要的硬件设备,并能合理配置、安装计算机和外围设备;安装和配置计算机软件系统;保养硬件和外围设备;清晰描述出现的计算机软硬件故障。
  • wifi模块
    wifi模块
    +关注
    Wi-Fi模块又名串口Wi-Fi模块,属于物联网传输层,功能是将串口或TTL电平转为符合Wi-Fi无线网络通信标准的嵌入式模块,内置无线网络协议IEEE802.11b.g.n协议栈以及TCP/IP协议栈。传统的硬件设备嵌入Wi-Fi模块可以直接利用Wi-Fi联入互联网,是实现无线智能家居、M2M等物联网应用的重要组成部分。
  • 74ls74
    74ls74
    +关注
    74LS74是双D触发器。功能多,可作双稳态、寄存器、移位寄存器、振荡器、单稳态、分频计数器等功能。本章详细介绍了74ls112的功能及原理,74ls74引脚图及功能表,74ls112的应用等内容。
  • MPU6050
    MPU6050
    +关注
    MPU-6000(6050)为全球首例整合性6轴运动处理组件,相较于多组件方案,免除了组合陀螺仪与加速器时间轴之差的问题,减少了大量的封装空间。
  • UHD
    UHD
    +关注
    UHD是”超高清“的意思UHD的应用在电视机技术上最为普遍,目前已有不少厂商推出了UHD超高清电视。
  • Protues
    Protues
    +关注
    Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限公司)。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。
  • STC12C5A60S2
    STC12C5A60S2
    +关注
    在众多的51系列单片机中,要算国内STC 公司的1T增强系列更具有竞争力,因他不但和8051指令、管脚完全兼容,而且其片内的具有大容量程序存储器且是FLASH工艺的,如STC12C5A60S2单片机内部就自带高达60K FLASHROM,这种工艺的存储器用户可以用电的方式瞬间擦除、改写。
  • 循迹小车
    循迹小车
    +关注
    做单片机的工程师相比都堆循迹小车有所认识,它是自动引导机器人系统的基本应用,那么今天小编就给大家介绍下自动自动循迹小车的原理,智能循迹小车的应用,智能循迹小车程序,循迹小车用途等知识吧!
  • 光立方
    光立方
    +关注
    光立方是由四千多棵光艺高科技“发光树”组成的,在2009年10月1日天安门广场举行的国庆联欢晚会上面世。这是新中国成立六十周年国庆晚会最具创意的三大法宝之首。
  • K60
    K60
    +关注
  • LM2596
    LM2596
    +关注
    LM2596是降压型电源管理单片集成电路的开关电压调节器,能够输出3A的驱动电流,同时具有很好的线性和负载调节特性。固定输出版本有3.3V、5V、12V,可调版本可以输出小于37V的各种电压。
  • 光模块
    光模块
    +关注
    光模块(optical module)由光电子器件、功能电路和光接口等组成,光电子器件包括发射和接收两部分。简单的说,光模块的作用就是光电转换,发送端把电信号转换成光信号,通过光纤传送后,接收端再把光信号转换成电信号。
  • STM32单片机
    STM32单片机
    +关注
    STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核
  • 步进驱动器
    步进驱动器
    +关注
    步进驱动器是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速和定位的目的。
  • Nexperia
    Nexperia
    +关注
    Nexperia是大批量生产基本半导体的领先专家,这些半导体是世界上每个电子设计都需要的组件。该公司广泛的产品组合包括二极管、双极晶体管、ESD 保护器件、MOSFET、GaN FET 以及模拟和逻辑IC。
  • CD4046
    CD4046
    +关注
    cD4046是通用的CMOS锁相环集成电路,其特点是电源电压范围宽(为3V-18V),输入阻抗高(约100MΩ),动态功耗小,在中心频率f0为10kHz下功耗仅为600μW,属微功耗器件。本章主要介绍内容有,CD4046的功能 cd4046锁相环电路,CD4046无线发射,cd4046运用,cd4046锁相环电路图。
  • COMSOL
    COMSOL
    +关注
    COMSOL集团是全球多物理场建模解决方案的提倡者与领导者。凭借创新的团队、协作的文化、前沿的技术、出色的产品,这家高科技工程软件公司正飞速发展,并有望成为行业领袖。其旗舰产品COMSOL Multiphysics 使工程师和科学家们可以通过模拟,赋予设计理念以生命。
  • 加速度传感器
    加速度传感器
    +关注
    加速度传感器是一种能够测量加速度的传感器。通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。
  • 联网技术
    联网技术
    +关注
  • 服务机器人
    服务机器人
    +关注
    服务机器人是机器人家族中的一个年轻成员,到目前为止尚没有一个严格的定义。不同国家对服务机器人的认识不同。
  • 四轴飞行器
    四轴飞行器
    +关注
    四轴飞行器,又称四旋翼飞行器、四旋翼直升机,简称四轴、四旋翼。这四轴飞行器(Quadrotor)是一种多旋翼飞行器。四轴飞行器的四个螺旋桨都是电机直连的简单机构,十字形的布局允许飞行器通过改变电机转速获得旋转机身的力,从而调整自身姿态。具体的技术细节在“基本运动原理”中讲述。
  • 基站测试
    基站测试
    +关注
    802.11ac与11基站测试(base station tests) 在基站设备安装完毕后,对基站设备电气性能所进行的测量。n的区别,802.11n无线网卡驱动,802.11n怎么安装。
  • TMS320F28335
    TMS320F28335
    +关注
    TMS320F28335是一款TI高性能TMS320C28x系列32位浮点DSP处理器
  • 静电防护
    静电防护
    +关注
    为防止静电积累所引起的人身电击、火灾和爆炸、电子器件失效和损坏,以及对生产的不良影响而采取的防范措施。其防范原则主要是抑制静电的产生,加速静电泄漏,进行静电中和等。
  • OBD
    OBD
    +关注
    OBD是英文On-Board Diagnostic的缩写,中文翻译为“车载诊断系统”。这个系统随时监控发动机的运行状况和尾气后处理系统的工作状态,一旦发现有可能引起排放超标的情况,会马上发出警示。
  • SDK
    SDK
    +关注
      SDK一般指软件开发工具包,软件开发工具包一般都是一些软件工程师为特定的软件包、软件框架、硬件平台、操作系统等建立应用软件时的开发工具的集合。软件开发工具广义上指辅助开发某一类软件的相关文档、范例和工具的集合。

关注此标签的用户(1人)

DZ蛋

编辑推荐厂商产品技术软件/工具OS/语言教程专题