完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 串口通讯
串口通信(Serial Communication), 是指外设和计算机间,通过数据信号线 、地线、控制线等,按位进行传输数据的一种通讯方式。这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,但其传输速度比并行传输低。
串口通信(Serial Communication), 是指外设和计算机间,通过数据信号线 、地线、控制线等,按位进行传输数据的一种通讯方式。这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,但其传输速度比并行传输低。
随着计算机系统的应用和微机网络的发展,通信功能越来越显得重要。这里所说的通信是指计算机与外界的信息交换。因此,通信既包括计算机与外部设备之间,也包括计算机和计算机之间的信息交换。由于串行通信是在一根传输线上一位一位的传送信息,所用的传输线少,并且可以借助现成的电话网进行信息传送,因此,特别适合于远距离传输。对于那些与计算机相距不远的人-机交换设备和串行存储的外部设备如终端、打印机、逻辑分析仪、磁盘等,采用串行方式交换数据也很普遍。在实时控制和管理方面,采用多台微机处理机组成分级分布控制系统中,各 CPU 之间的通信一般都是串行方式。所以串行接口是微机应用系统常用的接口。许多外设和计算机按串行方式进行通信,这里所说的串行方式,是指外设与接口电路之间的信息传送方式,实际上,CPU 与接口之间仍按并行方式工作。
串口通信(Serial Communication), 是指外设和计算机间,通过数据信号线 、地线、控制线等,按位进行传输数据的一种通讯方式。这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,但其传输速度比并行传输低。
随着计算机系统的应用和微机网络的发展,通信功能越来越显得重要。这里所说的通信是指计算机与外界的信息交换。因此,通信既包括计算机与外部设备之间,也包括计算机和计算机之间的信息交换。由于串行通信是在一根传输线上一位一位的传送信息,所用的传输线少,并且可以借助现成的电话网进行信息传送,因此,特别适合于远距离传输。对于那些与计算机相距不远的人-机交换设备和串行存储的外部设备如终端、打印机、逻辑分析仪、磁盘等,采用串行方式交换数据也很普遍。在实时控制和管理方面,采用多台微机处理机组成分级分布控制系统中,各 CPU 之间的通信一般都是串行方式。所以串行接口是微机应用系统常用的接口。许多外设和计算机按串行方式进行通信,这里所说的串行方式,是指外设与接口电路之间的信息传送方式,实际上,CPU 与接口之间仍按并行方式工作。
工作方式
由于 CPU 与接口之间按并行方式传输,接口与外设之间按串行方式传输,因此,在串行接口中,必须要有 “ 接收移位寄存器 ” (串→并)和 “ 发送移位寄存器 ” (并→串)。 在数据输入过程中,数据 1 位 1 位地从外设进入接口的 “ 接收移位寄存器 ”,当 “ 接收移位寄存器 ” 中已接收完 1 个字符的各位后,数据就从 “ 接收移位寄存器 ” 进入 “ 数据输入寄存器 ” 。 CPU 从 “ 数据输入寄存器 ” 中读取接收到的字符。(并行读取,即 D7~D0 同时被读至累加器中)。 “ 接收移位寄存器 ” 的移位速度由 “ 接收时钟 ” 确定。
在数据输出过程中,CPU 把要输出的字符(并行地)送入 “ 数据输出寄存器 ”,“ 数据输出寄存器 ” 的内容传输到 “ 发送移位寄存器 ”,然后由 “ 发送移位寄存器 ” 移位,把数据 1 位 1 位地送到外设。 “ 发送移位寄存器 ” 的移位速度由 “ 发送时钟 ” 确定。
接口中的 “ 控制寄存器 ” 用来容纳 CPU 送给此接口的各种控制信息,这些控制信息决定接口的工作方式。
“ 状态寄存器 ” 的各位称为 “ 状态位 ”,每一个状态位都可以用来指示数据传输过程中的状态或某种错误。例如,用状态寄存器的 D5 位为 “1” 表示 “ 数据输出寄存器 ” 空,用 D0 位表示 “ 数据输入寄存器满 ”,用 D2 位表示 “ 奇偶检验错 ” 等。
能够完成上述 “ 串 《- -》 并 ” 转换功能的电路,通常称为 “ 通用异步收发器 ” (UART :Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251,16550
接口标准
⑴实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。
⑵进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。
⑶控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。
⑷进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。
⑸进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。
⑹提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。(理论性强)
串口通信的基本知识
本文介绍了串口通讯的基本概念、数据格式、通讯方式、典型的串口通讯标准等内容。
串口通讯,RS232,RS485,停止位,奇校验,偶校验
1 串口通讯
串口通讯(Serial Communication),是指外设和计算机间,通过数据信号线、地线等,按位进行传输数据的一种通讯方式。
串口是一种接口标准,它规定了接口的电气标准,没有规定接口插件电缆以及使用的协议。
2 串口通讯的数据格式
一个字符一个字符地传输,每个字符一位一位地传输,并且传输一个字符时,总是以“起始位”开始,以“停止位”结束,字符之间没有固定的时间间隔要求。
每一个字符的前面都有一位起始位(低电平),字符本身由7位数据位组成,接着字符后面是一位校验位(检验位可以是奇校验、偶校验或无校验位),最后是一位或一位半或二位停止位,停止位后面是不定长的空闲位,停止位和空闲位都规定为高电平。实际传输时每一位的信号宽度与波特率有关,波特率越高,宽度越小,在进行传输之前,双方一定要使用同一个波特率设置。
3 通讯方式
单工模式(Simplex Communication)的数据传输是单向的。通信双方中,一方固定为发送端,一方则固定为接收端。信息只能沿一个方向传输,使用一根传输线。
半双工模式(Half Duplex)通信使用同一根传输线,既可以发送数据又可以接收数据,但不能同时进行发送和接收。数据传输允许数据在两个方向上传输,但是,在任何时刻只能由其中的一方发送数据,另一方接收数据。因此半双工模式既可以使用一条数据线,也可以使用两条数据线。半双工通信中每端需有一个收发切换电子开关,通过切换来决定数据向哪个方向传输。因为有切换,所以会产生时间延迟,信息传输效率低些。
全双工模式(Full Duplex)通信允许数据同时在两个方向上传输。因此,全双工通信是两个单工通信方式的结合,它要求发送设备和接收设备都有独立的接收和发送能力。在全双工模式中,每一端都有发送器和接收器,有两条传输线,信息传输效率高。
显然,在其它参数都一样的情况下,全双工比半双工传输速度要快,效率要高。
4 偶校验与奇校验
在标准ASCII码中,其最高位(b7)用作奇偶校验位。所谓奇偶校验,是指在代码传送过程中用来检验是否出现错误的一种方法,一般分奇校验和偶校验两种。奇校验规定:正确的代码一个字节中1的个数必须是奇数,若非奇数,则在最高位b7添1;偶校验规定:正确的代码一个字节中1的个数必须是偶数,若非偶数,则在最高位b7添1。
5 停止位
停止位是按长度来算的。串行异步通信从计时开始,以单位时间为间隔(一个单位时间就是波特率的倒数),依次接受所规定的数据位和奇偶校验位,并拼装成一个字符的并行字节;此后应接收到规定长度的停止位“1”。所以说,停止位都是“1”,1.5是它的长度,即停止位的高电平保持1.5个单位时间长度。一般来讲,停止位有1,1.5,2个单位时间三种长度。
6 波特率
波特率就是每秒钟传输的数据位数。
波特率的单位是每秒比特数(bps),常用的单位还有:每秒千比特数Kbps,每秒兆比特数Mbps。串口典型的传输波特率600bps,1200bps,2400bps,4800bps,9600bps,19200bps,38400bps。
PLC/PC与称重仪表通讯时,最常用的波特率是9600bps,19200bps。PLC/PC或仪表与大屏幕通讯时,最常用的波特率是600bps。
7 典型的串口通讯标准
EIA RS232(通常简称“RS232”): 1962年由美国电子工业协会(EIA)制定。
EIA RS485(通常简称“RS485”): 1983年由美国电子工业协会(EIA)制定。
8 RS232串口
RS232是计算机与通信工业应用中最广泛一种串行接口。它以全双工方式工作,需要地线、发送线和接收线三条线。RS232只能实现点对点的通信方式。
8.1 RS232串口缺点
●接口信号电平值较高,接口电路芯片容易损坏。
●传输速率低,最高波特率19200bps。
●抗干扰能力较差。
●传输距离有限,一般在15m以内。
●只能实现点对点的通讯方式。
8.2 RS232串口接口定义
RXD:接收数据,TXD:发送数据,GND/SG:信号地。
8.3 电脑DB9针接口定义
电脑DB9针接口是常见的RS232串口,其引脚定义如下:
2号脚:RXD(接收数据)
3号脚:TXD(发送数据)
5号脚:SG或GND(信号地)
其它脚:我们不用
电脑RS232串口与仪表串口连接图:
9 RS485串口
9.1 RS485串口特点
●RS485采用平衡发送和差分接收,具有良好的抗干扰能力,信号能传输上千米。
●RS485有两线制和四线制两种接线。采用四线制时,只能实现点对多的通讯(即只能有一个主设备,其余为从设备)。四线制现在很少采用,现在多采用两线制接线方式。
●两线制RS485只能以半双式方式工作,收发不能同时进行。
●RS485在同一总线上最多可以接32个结点,可实现真正的多点通讯,但一般采用的是主从通信方式,即一个主机带多个从机。
●因RS485接口具有良好的抗干扰能力,长的传输距离和多站能力等优点使其成为首选的串行接口。
9.2 485抑制共模干扰示意图
9.3 RS485串口接口定义
A或Data+(D+)或+:信号正;
B或Data-(D-)或-:信号负。
9.4 计算机与RS485仪表通讯
计算机自带的串口只有RS232,没有RS485,如果计算机要与RS485串口的仪表进行通讯,必须使用串口转换器或装上RS485串口转换卡后才能进行通讯。
9.5 RS485串口的终端电阻
●一般情况下不需要增加终端电阻,只有在RS485通信距离超过100米的情况下,要在RS485通讯的开始端和结束端增加终端电阻,RS485典型终端电阻是120欧。
●终端电阻是为了消除在通信电缆中的信号反射在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。
阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。
引起信号反射的另一原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。
10 串口通讯硬件常见的注意事项
●通讯电缆端子一定接牢,不可有任何松动,否则,可能会烧坏仪表或上位机的通讯板。
●不可带电拔插通讯端子,否则,可能会烧坏仪表或上位机的通讯板,一定要关闭仪表电源后才能去拔插通讯端子或接通讯线。
●通讯用的屏蔽电缆最好选用双层隔离型屏蔽电缆,其次选用单层屏蔽电缆,最好不要选用无屏蔽层的电缆,且电缆屏蔽层一定要能完全屏蔽,有些质量差的电缆,屏蔽层很松散,根本起不到屏蔽的作用。单层屏蔽的电缆屏蔽层应一端接地,双层屏蔽的电缆屏蔽层其外层(含铠装)应两端接地,内层屏蔽则应一端接地。
●仪表使用RS232通讯时,通讯电缆长度不得超过15米。
●一般RS485协议的接头没有固定的标准,可能根据厂家的不同引脚顺序和管脚功能可能不尽相同,用户可以查阅相关产品RS485的引脚图。
●RS485通讯电缆最好选用阻阬匹配、低衰减的RS485专用通讯电缆(双绞线),不要使用普通的双绞电缆或质量较差的通讯电缆。因为普通电缆或质量差的通讯电缆,可能阻抗不匹配、衰减大、绞合度不够、屏蔽层太松散,这样会导致干扰将非常大,会造成通讯不畅,甚至通讯不上。
●仪表使用RS485通讯时,每台仪表必须手牵手地串下去,不可以有星型连接或者分叉,如果有星型连接或者分叉,干扰将非常大,会造成通讯不畅,甚至通讯不上。
●485总线结构理论上传输距离达到1200米,一般是指通讯线材优质达标,波特率9600,只有一台485设备才能使得通讯距离达到1200米,而且能通讯并不代表每次通讯都正常,所以通常485总线实际的稳定通讯距离远远达不到1200米。负载485设备多,线材阻抗不同时,通讯距离更短。
●仪表使用RS485通讯时,必要时,请接入终端电阻,以增强系统的抗干扰性,典型的终端电阻阻值是120欧。
11 串口通讯软件设置要点
11.1 有关通讯的一些基本概念
●主机与从机:在通讯系统中起主要作用、发布主要命令的称为主机,接受命令的称为从机。
●连续方式:指主机不需要发布命令,从机就能自动地向主机发送数据。
●指令方式:指主机向从机发布命令,从机根据指令执行动作,并将结果“应答”给主机的模式。
●输出数据类型:指在连续方式通讯时,从机输出给主机的数据类型。
●通讯协议:指主机与从机通讯时,按哪一种编码规则来通讯。
●波特率:主从机之间通讯的速度。
●数据位:每次传输数据时,数据由几位组成。
●校验位:数据传输错误检测,可以是奇校验、偶校验或无校验。
●地址:每一台从机的编号。
11.2 主从机之间通讯设置要点
●要点一:主/从RS232/485硬件有无设置正确,通讯线有无接对。有些通讯板卡是RS422与RS485共用的,依靠板上跳线来实现的,有些仪表RS232/485也需要通讯跳线来实现。
●要点二:主机上的通讯端口有无设置正确;超时(一般设置为2s)、通讯延时(一般设置为5~20ms)、ACK信号延时(一般设置为0ms)有无设置正确。
●要点三:主/从机通讯协议有无选择正确。
●要点四:主/从机波特率有无选择正确。
●要点五:主/从机数据位有无选择正确。数据位可以选择7位,8位。
●要点六:主/从机校验位有无选择正确。校验位一般可选择偶校验、奇校验、无校验。
●要点七:主/从机停止位有无选择正确。停止位可以选择1位、1.5位还是2位。
●要点八:从机地址有无选择正确。
●要点九:主/从机的通讯方式有无选择正确。
进行通讯测试的时候经常会进行线路测试,测试所用的串口线是否可用,方法有二如下:
1 把串口线接到不同的串口,用串口调试工具从一个串口发数据,另一个能正常收到说明串口线是OK的。
2 把串口线的一端短接(用金属把2,3号脚连通),用万用表测另一端的2,3号如果正常的话会有嘀嘀的短接报警声。
快速判断出485从站设备是否支持MODBUS RTU无线通讯
对于变频器和仪表设备,都支持485串口通讯,那么怎么判断从站设备支持那种协议呢?通常分为两种方式去判断:1.从设备参数参看2.从设备通讯报文查看。本次文...
串口通信异常处理方法 1. 异常检测 在串口通信中,首先需要能够检测到异常情况。异常检测可以通过以下几种方式实现: 硬件检测 :利用串口硬件的中断和状态...
FX20系列分布式I/O重磅发布两款功能模块,2通道高速计数模块和2通道串口通讯模块,基于高速背板总线并搭配多种耦合器,为控制系统提供更丰富的功能选择,...
设备232、485和TTL都是串口通讯的常见接口类型的区别及如何选择
设备232、485和TTL都是串口通讯的常见接口类型的区别及如何选择 设备232、485和TTL都是串口通讯的常见接口类型,它们之间有以下区别: 232...
MG-LINK Mini是由巨微集成电路自主研发的低功耗、高可靠性、自带PCB天线的BLE透传模块。巨微凭借其知名的芯片和协议栈设计能力,为芯片和模块品...
首先需要选择“Create new project”选项,然后在“Project name:”里输入PTP;在“Path:”修改项目的存储路径为“C:”...
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |