完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 光谱
光谱(spectrum) :是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。
光谱(spectrum) :是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。光谱中最大的一部分可见光谱是电磁波谱中人眼可见的一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人类大脑视觉所能区别的所有颜色,譬如褐色和粉红色。
光波是由原子运动过程中的电子产生的。各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同。研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学。分子的红外吸收光谱一般是研究分子的振动光谱与转动光谱的,其中分子振动光谱一直是主要的研究课题。
光谱(spectrum) :是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。光谱中最大的一部分可见光谱是电磁波谱中人眼可见的一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人类大脑视觉所能区别的所有颜色,譬如褐色和粉红色。
光波是由原子运动过程中的电子产生的。各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同。研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学。分子的红外吸收光谱一般是研究分子的振动光谱与转动光谱的,其中分子振动光谱一直是主要的研究课题。
原理
复色光中有着各种波长(或频率)的光,这些光在介质中有着不同的折射率。因此,当复色光通过具有一定几何外形的介质(如三棱镜)之后,波长不同的光线会因出射角的不同而发生色散现象,投映出连续的或不连续的彩色光带。这个原理亦被应用于著名的太阳光的色散实验。太阳光呈现白色,当它通过三棱镜折射后,将形成由红、橙、黄、绿、蓝、靛、紫顺次连续分布的彩色光谱,覆盖了大约在390到770纳米的可见光区。历史上,这一实验由英国科学家艾萨克·牛顿爵士于1665年完成,使得人们第一次接触到了光的客观的和定量的特征。
光谱定性分析
光谱定性分析就是根据光谱图中是否有某元素的特征谱线(一般是最后线)出现来判断样品中是否含有某种元素。定性分析方法常有以下两种。(1)标准试样光谱比较法将要检出元素的纯物质或纯化合物与试样并列摄谱于同一感光板上,在映谱仪上检查试样光谱与纯物质光谱。若两者谱线出现在同一波长位置上,即可说明某一元素的某条谱线存在。此法多用于不经常遇到的元素或谱图上没有的元素分析。(2)铁光谱比较法铁光谱比较法是目前最通用的方法,它采用铁的光谱作为波长的标尺,来判断其它元素的谱线。铁光谱作标尺有如下特点。①谱线多,在210~600nm范围内有几千条谱线;②谱线间相距都很近,在上述波长范围内均匀分布,对每一条铁谱线波长,人们都已进行了精确的测量。
激发光谱与发射光谱有什么区别?
1. 荧光的定义(fluorescence)。
对于荧光有这样一些文字的定义和解释:a. “荧光是物质或分子发出的冷光(luminescence)”。所谓冷光,是指光并非由热产生,可以是光致、电致、化学反应所致等等(反正就不能是热致)。b. “当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,立即退激发并发出比入射光波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。”
这些文字的解释都难以理解和形象化。其实对于荧光最好的解释来自于对光子与物质分子作用过程(分子的激发和驰豫)的理解。
2. 荧光从何而来 —— 分子的激发和驰豫 ?
图 1
PS:图1摘自Principles of fluorescence Spectroscopy, Joseph R. Lakowicz
图1为一种Jablonski diagram(就简单的理解为能级图吧)。图中S0,S1,S2分别表示分子中的电子基态,第一、第二电子激发态。当分子吸收光子,电子则可能从基态(S0)跃迁到激发态(S1,S2)。激发态电子不稳定,会从激发态(S1,S2)回到基态(S0),并发出荧光(这就是荧光的源头)。当然并不一定要发出荧光,可以产生热或者其他形式能量。如果电子从激发态(S1)通过系间窜越转化为电子T1激发态,然后再从激发态T1回到S0,则发出磷光。(磷光与荧光的根本区别在此)。至于S1激发态和T1激发态的区别主要在于电子自旋的方向(单线态和三线态)。
分子吸收光后其中电子的激发和驰豫分别需要满足两大规律。激发过程满足Franck – Condon规则;退激发满足Kasha规则。Franck– Condon规则(图2A)的大意为:电子的跃迁过程很快,这一过程中原子核的相对位置来不及发生变化,可以简单理解为垂直跃迁。而Kasha规则(图2B)规定在电子驰豫复合的过程中,首先电子要驰豫到电子激发态的最低能级,然后再回到基态。如图2所示:
图 2
PS:图2摘自维基百科相关词条
3. 如何解读荧光光谱(稳态)
3a :荧光光谱分为:激发光谱(PLE)和发射光谱(PL)。
激发光谱:固定发射光的波长,改变激发光的波长,记录荧光强度随激发波长的变化。
发射光谱:固定激发光的波长,记录不同发射波长处荧光强度随发射波长的变化。
无论是激发还是发射荧光光谱图,其都是记录发射荧光强度随波长的变化。所以荧光光谱中纵坐标为强度,横坐标为波长。首先从图中能获取峰位和半峰宽。峰位的直观体现是荧光的颜色;半峰宽则表示荧光的纯度。
图 3
PS:图3摘自Nano Letters,2,1027
荧光光谱常与吸收光谱同时出现。所以可以与分子的吸收光谱相比较。图3A为同一物质的吸收光谱(UV - Vis)、荧光激发光谱(PLE)和荧光发射光谱图(PL)。从图中不难发现激发光谱与吸收光谱非常相似。但是两者有着本质的不同,吸收光谱的纵坐标是吸光度(Absorbance),反应物质吸收光的情况;荧光光谱的纵坐标是分子发出的荧光强度(Intensity),其不仅与物质吸光能力有关还和量子效率有关。在很多研究体系中,常常结合两者分析问题。
上海光机所在基于空芯光纤的超快脉冲压缩与紫外飞秒激光产生研究中取得进展
图1. (a) 宽带紫外色散波辐射机理,(b) 窄带色散波辐射,(c) 倍频程宽度的色散波辐射,(d) 不同波长下的光斑轮廓 近日,中科院上海光机所强场...
气敏传感器是一种检测特定气体或气体浓度的传感器,广泛应用于环境监测、工业安全、医疗诊断等领域。 1. 金属氧化物半导体传感器(MOS) 金属氧化物半导体...
微米级测量!深视智能光谱共焦位移传感器助力光学镜片厚度及曲率测量
光学镜片厚度及曲率测量随着科技的发展,光学镜头已广泛应用在电子、医疗、数码、军工、航天、汽车等各个行业中。在镜片生产的过程中,镜片的厚度和曲率都会影响镜...
基于LIBS技术的煤炭灰分、挥发分和热值定量分析及特征工程研究
本章基于原位LIBS技术利用煤炭全光谱波点与目标校准值之间的相关性对独立变量进行重组,并分别建立了测定煤样灰分、挥发分和热值的定量模型。为了评估这种特征...
在现代科技中,光传感器扮演着越来越重要的角色,从简单的环境光检测到复杂的光学成像系统,光传感器的应用无处不在。 1. 应用场景 首先,明确光传感器的应用...
在科学分析与检测的领域中,LIBS(激光诱导击穿光谱)技术正逐渐成为一颗璀璨的明星。这项技术有着独特的魅力和广泛的应用前景,那么它的发展趋势究竟是怎样的...
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |