完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 网络分析仪
网络分析仪一种能在宽频带内进行扫描测量以确定网络参量的综合性微波测量仪器。全称是微波网络分析仪。网络分析仪是测量网络参数的一种新型仪器,可直接测量有源或无源、可逆或不可逆的双口和单口网络的复数散射参数,并以扫频方式给出各散射参数的幅度、相位频率特性。
网络分析仪一种能在宽频带内进行扫描测量以确定网络参量的综合性微波测量仪器。全称是微波网络分析仪。网络分析仪是测量网络参数的一种新型仪器,可直接测量有源或无源、可逆或不可逆的双口和单口网络的复数散射参数,并以扫频方式给出各散射参数的幅度、相位频率特性。自动网络分析仪能对测量结果逐点进行误差修正,并换算出其他几十种网络参数,如输入反射系数、输出反射系数、电压驻波比、阻抗(或导纳)、衰减(或增益)、相移和群延时等传输参数以及隔离度和定向度等。
网络分析仪一种能在宽频带内进行扫描测量以确定网络参量的综合性微波测量仪器。全称是微波网络分析仪。网络分析仪是测量网络参数的一种新型仪器,可直接测量有源或无源、可逆或不可逆的双口和单口网络的复数散射参数,并以扫频方式给出各散射参数的幅度、相位频率特性。自动网络分析仪能对测量结果逐点进行误差修正,并换算出其他几十种网络参数,如输入反射系数、输出反射系数、电压驻波比、阻抗(或导纳)、衰减(或增益)、相移和群延时等传输参数以及隔离度和定向度等。
频谱分析仪和网络分析仪的区别
频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。
网络分析仪一种能在宽频带内进行扫描测量以确定网络参量的综合性微波测量仪器。全称是微波网络分析仪。网络分析仪是测量网络参数的一种新型仪器,可直接测量有源或无源、可逆或不可逆的双口和单口网络的复数散射参数,并以扫频方式给出各散射参数的幅度、相位频率特性。自动网络分析仪能对测量结果逐点进行误差修正,并换算出其他几十种网络参数,如输入反射系数、输出反射系数、电压驻波比、阻抗(或导纳)、衰减(或增益)、相移和群延时等传输参数以及隔离度和定向度等。
矢量网络分析仪简介
矢量网络分析仪,它本身自带了一个信号发生器,可以对一个频段进行频率扫描。 如果是单端口测量的话,将激励信号加在端口上,通过测量反射回来信号的幅度和 相位,就可以判断出阻抗或者反射情况。 而对于双端口测量,则还可以测量传输参数。 由于受分布参数等影响明显,所以网络分析仪使用之前必须进行校准。
在微波电路的设计和计算中,需要对所用元、器件特性的全部网络参数进行全面定值。而微波元、器件中,包括微波晶体管,大多采用S参数(散射参数)来表述它们的特性。一般二端口网络需要有四个散射参数(S11、S22、S12和S21),才能对其全面定值。因此往往采用测量的方法来确定网络的参数
20世纪60年代中期,出现能在宽频带范围内扫频测量并能显示全部网络S参数的模值和幅角的多功能仪器,这就是微波网络分析仪。因此网络分析仪的基本部分实际上就是一台S参数测量仪。
由于测定了网络的S参数后,网络的其它各种特性参量都可以从S参数中导出,因此,微波网络分析仪具有多种功能。
原理
一个任意多端口网络的各端口终端均匹配时,由第n个端口输入的入射行波 an将散射到其余一切端口并 发射出去。若第m个端口的出射行波为bm,则n口与m口之间的散射参数Smn=bm/an。一个双口网络共有四个散射参数 S11、S21、S12和S22。当两个终端均匹配时,S11和S22就分别是端口1和2的反射系
数,S21是由1口至2口的传输系数,S12则是反方向的传输系数。当某一端口m终端失配时,由终端反射回来的行波又重新进入m口。这可以等效地看成是m口仍是匹配的,但有一个行波am入射到m口。这样,在任意情况下都可以列出各口等效入射、出射行波与散射参数之间关系的联立方程组。据此可以解出网络的一切特性参数,如终端失配时的输入端反射系数、电压驻波比、输入阻抗以及各种正向反向传输系数等。这就是网络分析仪的最基本的工作原理。单端口网络可视为双口网络的特例,在其中除S11之外,恒有S21=S12=S22。对于多端口网络,除了一个输入和一个输出端口之外,可在其余一切端口都接上匹配负载,从而等效为一个双端口网络。轮流选择各对端口作为等效双口网络的输入、输出端,进行一系列测量并列出相应的方程,即可解得n端口网络的全部n2个散射参数,从而求出n端口网络的一切特性参数。 图左为四端口网络分析仪测量S11时测试单元的原理示意,箭头表示各行波的路径。信号源 u输出信号经开关S1和定向耦合器D2输入到被测网络的端口1,这就是入射波a1。端口1的反射波(即1口的出射波b1)经定向耦合器 D2和开关传到接收机的测量通道。信号源u的输出同时经定向耦合器D1传到接收机的参考通道,这个信号是正比于a1的。于是双通道幅度-相位接收机就测出b1/a1,即测出S11,包括其幅值和相位(或实部和虚部)。测量时,网络的端口2接上匹配负载R1,以满足散射参数所规定的条件。系统中的另一个定向耦合器D3也终接匹配负载R2,以免产生不良影响。其余三个S 参数的测量原理与此类同。图右为测量不同Smn参数时各开关应放置的位置。
在实际测量之前,先用三个阻抗已知的标准器(例如一个短路、一个开路和一个匹配负载)供仪器进行一系列测量,称为校准测量。由实测结果与理想(无仪器误差时)应有的结果比对,可通过计算求出误差模型中的各误差因子并存入计算机中,以便对被测件的测量结果进行误差修正。在每一频率点上都按此进行校准和修正。测量步骤和计算都十分复杂,非人工所能胜任。
上述网络分析仪称为四端口网络分析仪,因为仪器有四个端口,分别接到信号源、被测件、测量通道和测量的参考通道。它的缺点是接收机的结构复杂,误差模型中并未包括接收机所产生的误差。
罗德施瓦茨(Rohde & Schwarz)矢量网络分析仪是一种高性能的测量设备,用于测量射频和微波器件的网络参数。为了确保测量结果的准确性,需要对矢量...
网络分析仪和频谱分析仪是两种广泛应用于电子测量领域的仪器。它们各自具有独特的工作原理和应用场景。本文将详细介绍网络分析仪的工作原理,网络分析仪与频谱分析...
信号发生器是一种电子设备,用于产生具有特定频率、波形和幅度的电信号。信号发生器广泛应用于测试和测量领域,例如在通信、音频、视频、射频和仪器设备中。本文将...
电子测量仪器是现代电子技术发展的重要基石,它们在科学研究、工业生产、通信技术、电力电子等领域发挥着至关重要的作用。本文将详细介绍电子测量仪器的种类及其各...
随着电子技术的飞速发展,差分阻抗测量在高速电路设计、信号完整性分析等领域的重要性日益凸显。差分阻抗是指差分信号在传输线路上所遇到的阻抗,其大小直接影响信...
随着通信技术的飞速发展,差分信号在高速数据传输、信号处理等领域的应用越来越广泛。差分信号作为一种特殊的信号形式,具有抗干扰能力强、信号传输稳定等优点。因...
使用网络分析仪测量电缆的方法在多个领域中具有广泛的应用,特别是在电子工程、通信工程以及电力系统等领域。以下是一个详细的应用描述,涵盖了使用网络分析仪测量...
网络分析仪,全称微波网络分析仪,是一种能在宽频带内进行扫描测量以确定网络参量的综合性微波测量仪器。其主要功能是测量网络参数,包括有源或无源、可逆或不可逆...
矢量网络分析仪(VNA)是一种极其精密的仪器,能够对电气网络的阻抗进行表征,测量结果可提供幅度和相位细节,从而深入了解其行为。被测设备(DUT)通常用于...
2024-12-27 标签:网络分析仪 85 0
爱德万Advantest R3767CG 网络分析仪 40M~8G(G系列:300K~8G) 高速测量:0.15毫秒/点 具有4通道和8迹线的多功能显示...
2024-12-26 标签:网络分析仪 74 0
电子连接器的测试与验证是确保其性能和质量的关键步骤。以下是对电子连接器进行测试与验证的方法: 一、测试与验证的目的 电子连接器的测试与验证旨在评估其电气...
安捷伦Agilent E8361C E8364B 网络分析仪
主要特性与技术指标 94 dB 的动态范围和 ,工作中可达到70 GHz) 支持TRL/LRM 校准,提供晶圆、夹具、波导和天线测量 混频器变频损耗、回...
描述 Agilent E8358A矢量网络分析仪是PNA系列网络分析仪平台的成员,它具有高速度和***,能满足今天对元件的苛刻测试要求。通过提供快扫描...
2024-12-11 标签:网络分析仪 133 0
在现代电子系统中,诸如无线通信、雷达和卫星导航等领域,信号源的相位噪声特性对其性能有着至关重要的影响。相位噪声直接关系到系统频谱纯度、信号稳定性和抗干扰...
2024-12-10 标签:网络分析仪 119 0
在现代通讯和电子工程领域,功率放大器(功放)是重要的组成部分,广泛应用于无线电、音频、视频以及各种信号处理系统中。为了确保功放的性能,精确的测量其输出信...
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 华秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |