根据最新资料显示:将超导和光取样技术应用于A/D变换器已成为未来的发展趋势。具有突破性的一项技术是“快速单通量”RSFQ 技术。该技术基于超导基本量子机械特性,说明了离散的量化形式中存在着磁通。在该技术中,单磁通量子脉冲代表二进制值。因为一个完整的单磁通量子代表一个脉冲,所以这种技术的性能受到输入信号最大转速率的严格限制。因此可以通过对处理速度与分辨率进行折衷的方法来达到最佳技术性能。在一个重复取样的基于超导A/D变换器中,孔径抖动的影响会大减少,使超宽频段工作已切实可行。而且在这样的A/D变换器中,其输入端的取样速率与输出端不同,其内部的可编程抽取器可根据比特数和带宽进行折衷来设置。
基于超导技术的A/D变换器另一个重要特性是高灵敏度。驱动单磁通量子电路所需的最小功率是1mW,即比高速半导体A/D变换器所需的1 mW小了三个数量级。这一特性加上高取样速率最终可使系统无需使用低噪声放大器LNA ,并可直接在天线端取样,由此可以得到更高的系统增益。尽管超导A/D变换器与半导体A/D变换器相比,在性能上还没有显著的优越性,但主要的技术精华还是非常有前途的。目前工作于19.6Gltz频段的超导A/D变换器已有演示。
在光取样A/D变换器中,取样与量化功能分别是在光域和电子域中完成的。光取样A/D变换器的主要优点在于模式锁定激光源的定时抖动小。目前已报道,信噪比SNR 为51dB的光取样A/D变换器就相当于速率为505Mss,有效分辨率为8.2比特的传统半导体A/D变换器。在不远的将来,通过进一步的改进,预计可以实现取样率达到数GHz且具有12比特分辨率的光取样A/D变换器。另外,锁定在10GHz激光模式已实现了光时钟脉冲的产生,每3ps3皮秒 宽脉冲的定时抖动为16fs0.016% , 幅度抖动为0.058%。这些标准的抖动值可使光取样率在10Gss时,精度达到11比特。
下面对不同的A/D变换器技术进行了比较:(其中,超导A/D变换器分辨率位数和速率都不是固定的值,可以进行折衷,以达到所期望的性能。)
目前D/A的发展水平是:高精度D/A16bits 5MSPS,高速度D/A14bits 1GSPS,速度和精度兼顾D/A 14bits 300MSPS。D/A技术可用变换器,还需要高速存储器,现在集成电路技术的发展已有1ns的砷化嫁RAM商品,但将大量砷化嫁RAM用到任意波形发生器上显然价格过高,而且也消耗大量功率,比较经济的做法是用多路转换的方案,允许波形存储在相对低速的COMSRAM。
DSP是限制软件无线电发展的瓶颈问题,其数据处理速度和精度直接关系到软件无线电台能否实现。目前采用的技术方案主要是数字信号处理技术DSP 、专用集成电路ASIC 、现场可编程门阵列FPGA 以及这几种技术的结合。高速DSP芯片是软件无线电的核心部分。随着微电子技术的发展,数字信号处理器件在速度和性能上有了很大的提高。2003年TI推出了业界速度最快的三款新型720MHzDSP,该速度打破了TI自己保持的600MHz全球最快速度DSP的记录,打破了性能极限。这些DSP的指令执行速度超过了5700HIPS,适用于下一代无线基础设施、数字视频、电信设备和成像应用。TI推出的另一款DSP,其速度达到1GHz。据悉,目前最快的芯片处理速度已达到10GFLOPS,但在性价比、功耗上仍很难满足要求。为解决这一问题,采用了一种RISC精简指令集计算 结构,这种结构的优点是尺寸小、功耗低、性能高。各DSP厂商纷纷采用新工艺,改进DSP芯核,并将几个DSP芯核、MPU芯核、专用处理单元,外围电路单元、存储单元统统集成在一个芯片上,成为DSP系统级集成电路。
FPGA是可重编程器件,所实现的功能大大超过今天的DSP微处理器,包括实现软件的可编程性、高速的硬件,并可实时重构。事实上,FPGA是真正的 “软”硬件,能在定制硬件和灵活的全软件方案之间折衷。近年来FPGA无论是在规模、处理速度还是功耗上,都得到了长足的进步。FPGA器件的集成度已达到上千万门,系统工作频率达到几百MHz。高端FPGA的时钟频率已高达250MHz,可提供25G次MAC的性能。
由于大规模FPGA既有传统FPGA运算速度快、功耗低的优点,又具有可动态配置的灵活性,在软件无线电中将发挥重大的作用,主要表现在:
●主要完成软件无线电台内部的数据处理、调制解调和编码解码等工作 由于电台内部数据流量大,进行滤波、变频等处理运算次数多。必须采用高速、实时、并行的数字信号处理器模块或专用集成电路才能达到要求。要完成这么艰巨的任务,必须要求硬件处理速度很高,芯片容量大,同时要求进行针对处理器算法的优化和改进。只有这样,才能实现电台内部软件的高速运行以及多种功能的灵活切换和控制。对于一些固定功能的模块如滤波器、下变频器等,可以用具有可编程能力的专用芯片来实现,而且这种芯片的处理速度要高于通用DSP芯片。
利用FPGA可以同时满足速度和灵活性两方面的要求,支持软件无线电中动态系统配置的功能。通常来说系统的分配方式是:计算密集型的部分在DSP内部完成;功能相对固定的部分,则由FPGA来完成。这样,既可以满足高速的数字信号处理器的要求,又可以实现对各种硬件的全方位配置。
●根据不同的标准,对理想的软件无线电进行配置,并提供数字化终端
理想的软件无线电是用A/D变换器对天线上的信号或中频信号进行数字化,但数字化后的数据不只是靠软件进行处理,而是利用各种灵活的、可重新配置的ASlC和通用数字信号处理器DSP 来缩减系统功耗、体积和成本。这些ASIC是可编程的,可以针对不同频道的特性和调制方式进行调节。具体的实施方案包括现场可编程门阵列FPGA 或ASIC, 它们比完全灵活的DSP实施方案更为经济。这些硬件模块可以通过软件进行选择,用作不同系统的公用硬件。
另外,FPGA提供了“芯片上的系统” 特征。它包含了连续的收发技术、RISC处理器和一定数量的可编程存储器,为软件配置无线电信号处理提供数字化终端。
●同DSP组合,可以提供较大的可编程能力
可编程门阵列FPGA 在实际中的可编程性比ASIC高,但FPGA要受门的个数和连线多少的限制,当电台在功能上需要扩展时,受门连接的限制,其可编程性要比DSP小。采用FPGA与DSP混合结构,具有较大的可编程能力。
●在软件无线电系统中实现转换、滤波等功能
FPGA同DSP、FIR专用芯片、存储器、I0接口组成可编程DSP模块,用以实现x.25物理层中数据比特流的透明传输。按照不同的数据处理流程,DSP模块的功能可划分为:与终端的数据交换、自适应调制解调、信道环境分析和管理、自适应频率估计选择和校正、单边带SSB 调制解调、频率交换等。整个DSP模块在软件无线电系统中通常用来满足频率变换和滤波的需求,实现转换、滤波、扩频、调制等功能。
评论
查看更多