


# **WEBENCH®** Clock Architect

Project Report
Project: 4427995/1 Project 1 - [CDCM6208V1]
Created: 7/15/15 11:46:51 PM



**Block Diagram** 

### System Specification and Parameters

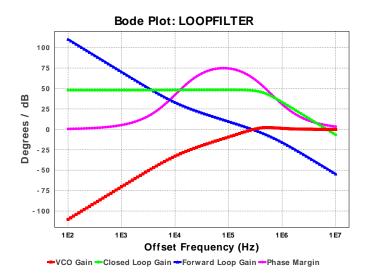
| Fixed | Out | nuto |
|-------|-----|------|
| rixea | Out | puis |

|   | Name   | Freq (MHz) | Format | Count |  |  |
|---|--------|------------|--------|-------|--|--|
| • | fixed0 | 5          | Any    | 1     |  |  |
|   | fixed1 | 6          | Any    | 1     |  |  |
|   | fixed2 | 7          | Any    | 1     |  |  |
|   |        |            |        |       |  |  |

| Options              |              |  |  |  |
|----------------------|--------------|--|--|--|
| Name                 | Design Value |  |  |  |
| Automatically Select | No           |  |  |  |

#### **Properties**

Input Frequencies


| . ~ ~ | 100011100        |                      |  |  |  |
|-------|------------------|----------------------|--|--|--|
|       | Name             | Design Value         |  |  |  |
|       | External Sources | none                 |  |  |  |
|       | Total BOM Cost   | \$5.2                |  |  |  |
|       | Total Current    | 132.5 mA             |  |  |  |
|       | Total Footprint  | 49.0 mm <sup>2</sup> |  |  |  |
|       |                  |                      |  |  |  |



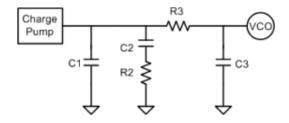
User ID = 4427995 Design Id = 17 Device = CDCM6208V1 Created = 7/15/15 11:46:51 PM

## WEBENCH <sup>®</sup> Clock Design Report

Loop Filter: CDCM6208V1 LOOPFILTER



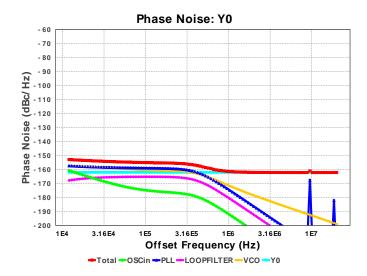
#### **Preferences**


| Name                  | Design Value |
|-----------------------|--------------|
| Filter Type           | Passive      |
| Filter Order          | 3rd Order    |
| Op Amp Gain           | 1.00         |
| Charge Pump Gain      | 2.50 mA      |
| VCO Gain              | 185.00 MHz/V |
| VCO Input Capacitance | 0.00 pF      |
| VCO Frequency         | 2520.00 MHz  |
| Phase Det. Frequency  | 10.00 MHz    |
|                       |              |

#### **Parameters**

| Name           | Design Value | Forced | Actual Value |  |
|----------------|--------------|--------|--------------|--|
| Loop Bandwidth | 292.129 kHz  | N      | 277.417 kHz  |  |
| Phase Margin   | 65.00 deg    | N      | 63.223 deg   |  |
| T3/T1Ratio     | 50.00 %      | N      | 0.00 %       |  |
| T4/T3Ratio     | 0.00 %       | N      | 0.00 %       |  |
| Gamma          | 9.50         | N      | 11.963       |  |

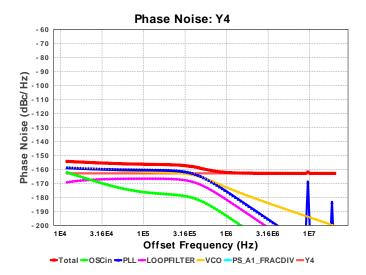
#### **Loop Filter Components**


|   | Name | Target Value | Fixed | Forced |  |
|---|------|--------------|-------|--------|--|
| _ | C1   | Open         | N     | N      |  |
|   | C2   | 15.00 nF     | N     | N      |  |
|   | C3   | 0.242 nF     | Υ     | N      |  |
|   | C4   | Open         | Υ     | N      |  |
|   | R2   | 1.00 kohms   | N     | N      |  |
|   | R3   | 0.10 kohms   | Υ     | N      |  |



## Output Block: CDCM6208V1 Y0 as LVDS output, 7.0 MHz

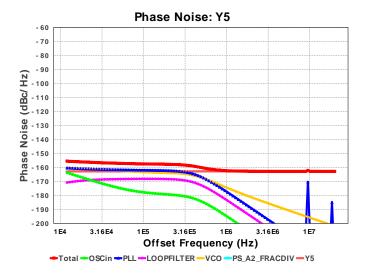
### Integrated Noise Info 12000.0 - 2.0E7


| Name                        | Design Value    |
|-----------------------------|-----------------|
| Calculated Area             | 0.00            |
| Equivalent Flat Noise       | -161.734 dBc/Hz |
| RMS Jitter                  | 1177.406 fs     |
| RMS Phase Error (deg)       | 0.003 deg       |
| RMS Phase Error             | 0.052 mrad      |
| EVM                         | 0.005%          |
| SNR                         | 85.716 dB       |
| Spur                        | -88.716 dBc     |
| Jitter (Pk-Pk)              | 8395.484 fs     |
| Jitter (Cycle to Cycle Pk)  | 16790.969 fs    |
| Jitter (Cycle to Cycle RMS) | 1665.103 fs     |
| A/D ENOB                    | 13.953 bits     |
| TIE (Time Interval Error)   | -0.286          |
| UI (Unit Interval)          | 0.00            |
| Lower Integration Limit     | 12.00 kHz       |
| Upper Integration Limit     | 20.00 MHz       |
|                             |                 |



## Output Block: CDCM6208V1 Y4 as LVCMOS output, 6.0 MHz

### Integrated Noise Info 12000.0 - 2.0E7


| Name                        | Design Value    |
|-----------------------------|-----------------|
| Calculated Area             | 0.00            |
| Equivalent Flat Noise       | -162.404 dBc/Hz |
| RMS Jitter                  | 1271.709 fs     |
| RMS Phase Error (deg)       | 0.003 deg       |
| RMS Phase Error             | 0.048 mrad      |
| EVM                         | 0.005%          |
| SNR                         | 86.386 dB       |
| Spur                        | -89.386 dBc     |
| Jitter (Pk-Pk)              | 9067.914 fs     |
| Jitter (Cycle to Cycle Pk)  | 18135.829 fs    |
| Jitter (Cycle to Cycle RMS) | 1798.468 fs     |
| A/D ENOB                    | 14.064 bits     |
| TIE (Time Interval Error)   | -0.286          |
| UI (Unit Interval)          | 0.00            |
| Lower Integration Limit     | 12.00 kHz       |
| Upper Integration Limit     | 20.00 MHz       |
|                             |                 |



#### Output Block: CDCM6208V1 Y5 as LVCMOS output, 5.0 MHz

#### Integrated Noise Info 12000.0 - 2.0E7

| Name                        | Design Value    |
|-----------------------------|-----------------|
| Calculated Area             | 0.00            |
| Equivalent Flat Noise       | -162.521 dBc/Hz |
| RMS Jitter                  | 1505.576 fs     |
| RMS Phase Error (deg)       | 0.003 deg       |
| RMS Phase Error             | 0.047 mrad      |
| EVM                         | 0.005%          |
| SNR                         | 86.503 dB       |
| Spur                        | -89.503 dBc     |
| Jitter (Pk-Pk)              | 10735.503 fs    |
| Jitter (Cycle to Cycle Pk)  | 21471.006 fs    |
| Jitter (Cycle to Cycle RMS) | 2129.206 fs     |
| A/D ENOB                    | 14.084 bits     |
| TIE (Time Interval Error)   | -0.286          |
| UI (Unit Interval)          | 0.00            |
| Lower Integration Limit     | 12.00 kHz       |
| Upper Integration Limit     | 20.00 MHz       |
|                             |                 |



Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.