电视基础
广播方式的电视系统(图07-02-1)的目标是:
-
有效地使用带宽;
-
高收视率。
图07-02-1 广播电视系统
电视系统是由发送端、信道和接收端三部分来组成的,其基本组成框图如图所示。
图07-02-2 电视系统基本组成框图
电视系统不仅能够传送声音而且能够传送图像。发送端利用摄像器件进行光-电转换,将光图像转换成相应的电信号。信号通道就是传送电信号的通路,可以是无线方式,也可以是有线方式。接收端则利用显像器件将经通道传送过来的图像电信号进行电-光转换,还原光信号,重现图像。
一.图像的顺序传送
1.像素
一幅黑白静止图像是由许多细小单元构成的,构成图像的细小单元称为像素(图07-02-3)。报纸上的传真图片正是这样构成的。对于观察者来说,每一个像素都有它的光学特性和空间位置,并且随时间变化。景物图像中的任意一个像素P均可以用八个物理量来表达,即
P = f ( x , y , z , L , H , S , R , t )
其中,( x , y , z )代表像素的空间位置,L、H、S 分别代表像素的亮度、色调和饱和度,R 为图像的分辨率(每一像素面积在景物总面积中所占的比例),而 t 则是该像素产生上述物理量的时间。对于现行的彩色电视系统来说,因只能表达图像的二维平面信息而不是三维立体信息,所以还无法将所有八个物理量全部反映出来。
显然,一幅图像分解的像素数越多,图像就越清晰。通常,一张35mm电影胶片的图像约有近百万个像素,一幅电视图像约有40万个像素。荧光屏上对于彩色图像,则由许多彩色像素组成。对于彩色电视机,一个彩色像素又是由红、绿、蓝三色点组成的。
图07-02-3 一幅图像由许多像素组成
电视系统中,首先在发送端把图像分解为像素,然后将这些像素的亮度信息(或色彩信息)转换成电信息传送出去,在接收端再将像素复合成图像。
2.静止图像的顺序传送
图像的像素信息是如何传送的呢?显然用同时传送制是不现实的。所谓同时制,是把一幅图像的所有像素信息,同时用各自的信号通道传送至接收端,这种方法是不易实现的,因为同时传送方式所需的信号通道太多。
实际上,在电视技术中常采用顺序传送制,即在发送端把图像上各像素的亮度信息按一定的时间顺序,逐一地转变为相应的电信号,并依次经同一个通道传送,在接收端按相同的顺序,将各个像素的电信号在电视机荧光屏相应位置上转变为不同亮度的光点。只要这种顺序传送的速度足够快,那么由于人眼的视觉惰性和发光材料的余辉特性,会感到整幅图像同时发光。这种顺序传送图像像素的方法构成的电视系统,称为顺序传送制电视系统,如图07-02-4所示。
图07-02-4 顺序传送制电视系统示意图
由图07-02-4可见,假设发送端为由许多个光电管组成的光电板,接收端为由许多个灯泡组成的显示板,两端由一个信号通道连接,构成电视传送系统。如传送“中”字图像,电子笔S从图像左上角开始依次扫划光电板,分解像素的同时完成光-电转换,依次将各像素的电信号通过一个通道传给电子笔S',S'以同样的顺序依次扫划显示板,复合像素的同时完成电-光转换,重现出图像。发送端和接收端的电子笔S、S',必须同步工作,即两电子笔S和S'的扫划位置一一对应,扫划速度一致,才能使重现图像准确无误。当然,电子笔的转换速度应足够快,利用人眼的视觉惰性就能看到一幅完整的图像。
实际上,在电视系统中,电子笔S和S'的转换作用是通过电子束扫描来完成的。
3.运动图像的顺序传送
现代电视系统所传送的图像绝大部分是运动图像,如何传输运动图像成为顺序传像系统的重要课题。电影的放映方式给人们以启迪。在放映电影时只要以每秒24幅的速度映出时间相关、内容相近的静止图片,由于人眼的视觉惰性,前幅图像的感觉尚未消失,后一幅图像就已到来,结果使人感觉到图像是连续运动的。
同理,电视也能采用和电影相似的办法,把活动图像按先后分解成一幅幅静止图像来传送,当传送速度足够快时,人眼就会感到是连续的活动图像。我国规定,电视图像传送速度为每秒25幅。
通过电影实践可知,图像传送达每秒24幅时虽可获得连续活动的图像效果,但却有一种使人眼产生疲劳的光闪烁感。为克服这种现象,电影机在映出一幅图像时还要遮光一次,使每幅图像连续投影两次,这样,实际映人人眼帘的图像就有48幅每秒。电视系统中也面临着同样的问题,它采用了隔行扫描技术,将每幅图像分两场进行传送,使电视机实际传送50场次每秒,从而有效地克服了光闪烁现象。
二.扫描 电视技术利用光电转换原理实现光学图像到电视信号变换,这一转换过程通常是在摄像机中完成的。当被摄景物通过摄像机镜头成像在摄像管的光电导层时,光电靶上不同点随照度不同激励出数目不等的光电子,从而引起不同的附加光电导产生不同的电位起伏,形成与光像对应的电图像。 利用人眼的视觉惰性,在发送端可以将代表图像中像素的物理量按一定顺序一个一个地传送,而在接收端再按同样的规律重显原图像。只要这种顺序进行的足够快,人眼就会感觉图像上在同时发亮。在电视技术中,将这种传送图像的既定规律称为扫描。如图07-02-5所示,摄像管光电导层中形成的电图像在电子束的扫描下顺序地接通每一个点,并连续地把它们的亮度变化转换为电信号;扫描得到的电信号经过单一通道传输后,再用电子束扫描具有电光转换特性的荧光屏,从电信号转换成光图像。 图07-02-5电视系统扫描原理
在通常情况下,目前电视系统普遍使用的电真空摄像和显像器件均采用电子束扫描来实现光电和电光转换;而随着CCD摄像机和平板显示器件的投入使用,利用各种脉冲数字电路便可实现上述转换。图07-02-6是阴极射线管(CRT)扫描处理的示意图,其中视频信号由亮度(luma)和色度(chroma)信号分量组成,分量视频分别送出亮度和色度信号。
图07-02-6 阴极射线管(CRT)扫描处理示意图 扫描方式有逐行扫描和隔行扫描两种。
电子束从左至右、从上而下逐行依次扫描的方式称为逐行扫描。电子束顺序扫描屏幕所形成的直线状亮点轨迹称为光栅,逐行扫描形成的光栅示意图如图07-02-7所示。
(1)行扫描:电子束沿水平方向的扫描称为行扫描。其中从左至右的扫描称为行扫描正程,简称行正扫,如图07-02-7(a)图中实线所示。从右至左的扫描称为行扫描逆程,简称行回扫。如图07-02-7(a)中虚线所示。行扫描正程时间长,逆程时间短。显然,对于每一幅图像来说,扫描行数越多,对图像的分解力越高,图像越细腻;但同时电视信号的带宽也就越宽,对信道的要求也越高。
(2)帧扫描:电子束沿垂直方向的扫描称为帧扫描。其中从上至下的扫描称为帧扫描正程,简称帧正扫,从下至上的扫描称为帧扫描逆程,简称帧回扫。图07-02-7(a)所示为帧扫描正程的扫描轨迹,图07-02-7(b)为帧扫描逆程的回扫轨迹。同样,帧扫描正程时间远大于帧扫描逆程时间。
实际上,行扫描和帧扫描是同时进行的,即电子束在进行水平方向扫描的同时又在垂直方向L移动,则电子束的运动轨迹为水平和垂直两个方向的合运动。由于电子束水平方向的扫描速度远大于垂直方向的速度,这样在荧光屏上形成了一条条略微斜向下的水平亮线,几百行密集的扫描亮线构成一个均匀栅状发光面,就是所谓的光栅。逐行扫描一帧即为一场。
(a) (b)
图07-02-7 逐行扫描光栅示意图
逐行扫描存在的缺点:要使图像连续而不产生闪烁现象,则需每秒换帧50次,即帧频为50Hz,但图像信号的频带宽度太宽,使电视设备复杂化。为了压缩图像信号的带宽,同时又能克服闪烁现象,借鉴电影技术,人们提出了隔行扫描方式。目前的广播电视采用隔行扫描。
2.隔行扫描(interlaced scanning)
隔行扫描是将一帧图像分成两场来扫描,第一场扫奇数行,称为奇数场,第二场再扫偶数行称为偶数场。奇数场和偶数场图像镶嵌在一起形成—幅完整的图像,如图07-02-8所示。
图07-02-8 隔行扫描重现图像示意图
隔行扫描的光栅如图07-02-9所示,电子束扫完第1行后回到第3行开始的位置接着扫,如图07-02-9(a)所示,然后在第5、7、……,行上扫,直到最后一行。奇数行扫完后接着扫偶数行(图07-02-9(b)),这样就完成了一帧(frame)的扫描(图07-02-9(c))。由此可以看到,隔行扫描的一帧图像由两部分组成:一部分是由奇数行组成,称奇数场,另一部分是由偶数行组成,称为偶数场,两场合起来组成一帧。因此在隔行扫描中,无论是摄像机还是显示器,获取或显示一幅图像都要扫描两遍才能得到一幅完整的图像(图07-02-8)。
(a)奇数场 (b)偶数场
(c)隔行扫描的一帧
图07-02-9 隔行扫描光栅示意图
在隔行扫描中、扫描的行数必须是奇数。如上所述,一帧画面分两场,第一场扫描总行数的一半,第二场扫描总行数的另一半。隔行扫描要求第一场结束于最后一行的一半,不管电子束如何折回,它必须回到显示屏顶部的中央,这样就可以保证相邻的第二场扫描恰好嵌在第一场各扫描线的中间。正是这个原因,才要求总的行数必须是奇数。
隔行扫描为使传送活动图像有连续感而不产生闪烁,需每秒扫描50场,即场频为50Hz。而两场为一帧,则每秒扫描25帧画面,即帧频为25Hz,从而降低了帧频,压缩了图像信号频带宽度,并克服了闪烁现象。
每秒钟扫描多少行称为行频fH;每秒钟扫描多少场称为场频fc;每秒扫描多少帧称帧频fF。fc和fF是两个不同的概念。
黑白电视和彩色电视都用隔行扫描,而计算机显示图像时一般都采用非隔行扫描。
三.消隐与同步
1.消隐
电视系统中,扫描正程期间传送图像信号,逆程期间不传送图像信号。电子束逆程扫描在荧光屏上出现回扫线,将对正程的图像造成干扰,影响图像的清晰度。因此需使电视机在行、场扫描逆程期间电子束截止,以消除行、场逆程回扫线,即实现消隐。方法是在电视台由同步机发出消隐信号使接收机显像管在行、场逆程扫描期间关断电子束。
2.同步
在电视系统中,为了使电视机重现的图像与摄像机拍摄的图像完全一致,要求接收端与发送端的电子束扫描必须同步。所谓同步是指收、发端扫描的频率(快慢)和扫描的相位(起始位置)完全相同。如果收、发端扫描不同步,则重现的图像变形或不稳定,严重时图像混乱不能正常收看。
为保证收、发端行场扫描同步,电视台同步机发出行、场同步信号,使电视接收机正确地重现图像。
四.摄像与显像
(一)摄像原理
发送端的光-电转换是由摄像管来完成的。摄像管的形式多种多样,目前黑白或彩色电视摄像机广泛采用具有内光电效应的氧化铅(pbo)管。图07-02-10 为其结构示意图,在它的圆柱形玻璃外壳内主要包含光电靶和电子枪两个部分。在管外套有偏转线圈、聚焦线圈和校正线圈。
图07-02-10 摄像管
(1)光电靶;在摄像管前方玻璃屏内壁上镀上一层很薄且透明的金属导电膜,作为光的通路和信号输出电极,金属膜的后面是光电靶,其结构如图07-02-11(a)所示。光电靶由三层半导体材料组成。中间较厚的一层为氧化铅半导体(pbo),称为I层,里面受电子束扫描的一层为P型半导体层,在外面受光照射并与透明金属膜接触的一层为N型半导体。P层与N层都比I层薄得多,因此pbo管的光电靶实际上相当于一个光敏二极管,主要由I层(pbo)决定其工作性能。由于半导体的光敏特性,当照射在它上面的光线强弱变化时,其等效电阻也随之变化。
(2)电子枪:电子枪由罩在真空玻璃管内的灯丝、阴极、控制栅极、加速极、聚焦极等组成。当给各电极施加正常电压时,阴极发射的电子,在加速极、聚焦极、高压阳极(网电极)的作用下,加速聚焦成很细的电子束打在光电靶上。该电子束受套在管外的行、场偏转磁场的作用,沿着靶面从左至右,从上而下地运动,以拾取信号。
(3)图像信号的产生:图像信号产生电路示意图如图07-02-11(b)所示。当图像通过摄像机镜头成像于光电靶时,对应于图像像素的亮点,光电导层的电导率高,等效电阻小,电子束扫射到图07-02-10光电靶与视频图像信号产生此“亮点”时,它在回路中形成的电流大,在负载电阻上的压降较大,输出电压较小。反之,对应于图像像素的暗点,光电导层相应的等效电阻大,电子束扫射到“暗点”时,它在回路中形成的电流小,在负载电阻上的压降较小,输出电压较大。显然,摄像管输出的图像信号电压的高低与图像的亮暗成反比,称为负极性电视信号。顺便指出,若图像信号电压的高低与图像的亮暗成正比,称之为正极性电视信号。由上所述,摄像管将图像各点像素的亮暗信息转换为电压随之变化的电信号,完成了光电转换。
图07-02-11
三 显像原理
显像管是接收端完成电-光转换的重要器件。显像管的结构示意图如图07-02-12所示。它是由电子枪和荧光屏构成的。显像管玻璃外壳的前端是荧光屏,荧光屏玻璃内壁涂有一层荧光粉,荧光粉受电子束轰击时能发光。电子枪由各个金属电极构成,各个电极加上合适电压时,电子枪的阴极受灯丝烘烤发出电子,聚合成束轰击荧光屏,电子束在外套偏转线圈产生磁场作用下扫描荧光屏。
图07-02-12 显像管结构示意图
当负极性图像信号加入阴极K时,能控制栅阴极电压的变化,控制电子束流Ik的强弱,从而控制电子束扫描荧光屏各点的亮度,在荧光屏还原成像。若加在阴极的图像信号电压越高,则栅阴极电压越负,即栅、阴极间负电压越大,电子束流越弱,相应荧光粉点越暗。反之,若阴极所加图像信号电压越低,电子束流越强,相应荧光粉点就越亮,正好与发送端图像相应的像素亮暗一致。电子束扫描整个荧光屏复合成完整图像。
(一)伽马(g )的概念
现实世界中几乎所有的CRT显示设备、摄影胶片和许多电子照相机的光电转换特性都是非线性的。这些非线性部件的输出与输入之间的关系(例如,电子摄像机的输出电压与场景中光强度的关系,CRT发射的光的强度与输入电压的关系)可以用一个幂函数来表示,它的一般形式是:
输出=(输入)g
式中的g (gamma)是幂函数的指数,它用来衡量非线性部件的转换特性。这种特性称为幂-律(power-law)转换特性。按照惯例,“输入”和“输出”都缩放到0~1之间。其中,0表示黑电平,1表示颜色分量的最高电平。对于特定的部件,人们可以度量它的输入与输出之间的函数关系,从而找出g 值。
实际的图像系统是由多个部件组成的,这些部件中可能会有几个非线性部件。如果所有部件都有幂函数的转换特性,那么整个系统的传递函数就是一个幂函数,它的指数g 等于所有单个部件的g 的乘积。如果图像系统的整个g =1,输出与输入就成线性关系。这就意味在重现图像中任何两个图像区域的强度之比率与原始场景的两个区域的强度之比率相同,这似乎是图像系统所追求的目标:真实地再现原始场景。但实际情况却不完全是这样。
当这种再生图像在“明亮环境”下,也就是在其他白色物体的亮度与图像中白色部分的亮度几乎相同的环境下观看时,g =1的系统的确可使图像看起来像“原始场景”一样。但是某些图像有时在“黑暗环境”下观看所获得的效果会更好,放映电影和投影幻灯片就属于这种情况。在这种情况下,g 值不是等于1而通常认为g »1.5,人的视角系统所看到的场景就好像是“原始场景”。根据这种观点,投影幻灯片的g 值就设计为1.5左右,而不是1。
还有一种环境称为中间环境的“暗淡环境”,这种环境就像房间中的其他东西能够看到,但比图像中白色部分的亮度更暗。看电视的环境和计算机房的环境就属于这种情况。在这种情况下,通常认为再现图像需要g »1.25才能看起来像“原始场景”。
(二)g校正
所有CRT显示设备都有幂-律转换特性,如果生产厂家不加说明,那么它的g 值大约等于2.5。用户对发光的磷光材料的特性可能无能为力去改变,因而也很难改变它的g 值。为使整个系统的g 值接近于使用所要求的g 值,起码就要有一个能够提供g 校正的非线性部件,用来补偿CRT的非线性特性。
在所有广播电视系统中,g 校正是在摄像机中完成的。最初的NTSC电视标准需要摄像机具有g =1/2.2=0.45的幂函数,现在采纳g =0.5的幂函数。PAL和SECAM电视标准指定摄像机需要具有g =1/2.8=0.36的幂函数,但这个数值已显得太小,因此实际的摄像机很可能会设置成g =0.45或者0.5。使用这种摄像机得到的图像就预先做了校正,在g =2.5的CRT屏幕上显示图像时,屏幕图像相对于原始场景的g 大约等于1.25。这个值适合“暗淡环境”下观看。
过去的时代是“模拟时代”,而今已进入“数字时代”,进入计算机的电视图像依然带有g =0.5的校正,这一点可不要忘记。虽然带有g 值的电视在数字时代工作得很好,尤其是在特定环境下创建的图像在相同环境下工作。可是在其他环境下工作时,往往会使显示的图像让人看起来显得太亮或者太暗,因此在可能条件下就要做g 校正。
在什么地方做g 校正是人们所关心的问题。从获取图像、存储成图像文件、读出图像文件直到在某种类型的显示屏幕上显示图像,这些个环节中至少有5个地方可有非线性转换函数存在并可引入g 值。例如:
camera_gamma:摄像机中图像传感器的g (通常g =0.4或者0.5)
encoding_gamma:编码器编码图像文件时引入g
decoding_gamma :译码器读图像文件时引入g
LUT_gamma:图像帧缓存查找表中引入g
CRT_gamma:CRT的g (通常g =2.5)
在数字图像显示系统中,由于要显示的图像不一定就是摄像机来的图像,假设这种图像的g 值等于1,如果encoding_gamma=0.5,CRT_gamma=2.5和decoding_gamma,LUT_gamma都为1.0时,整个系统的g 就近似等于1.25。
根据上面的分析,为了在不同环境下观看到“原始场景”可在适当的地方加入g 校正。
评论
查看更多