电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>音视频及家电>视频技术>最大限度地减少总谐波失真贡献的模拟开关在音频系统-Minim

最大限度地减少总谐波失真贡献的模拟开关在音频系统-Minim

收藏

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论

查看更多

相关推荐

最小次谐波振荡 飞兆推出两款单通道升压控制器

飞兆半导体 LED 背光升压开关减少功率损耗,并最大限度减少高功率应用中的次谐波振荡
2012-10-10 09:55:54844

设计高精度模拟系统常见谐波失真及方案

噪声和失真是工程师在设计高精度模拟系统常见的两个令人挠头的问题。但是,当我们查看一个运算放大器数据表中的总谐波失真和噪声 (THD+N) 数值时,也许不能立即搞清楚哪一个才是你要应对的敌人:噪声还是
2018-04-13 09:34:074566

意法半导体新MDmesh™ K6 800V STPOWER MOSFET提高能效,最大限度降低开关功率损耗

STPOWER MDmesh K6 新系列超级结晶体管改进多个关键参数,最大限度减少系统功率损耗,特别适合基于反激式拓扑的照明应用。
2021-10-26 11:53:38823

谐波失真和噪声曲线详解

John Caldwell 噪声和失真是工程师在设计高精度模拟系统常见的两个令人挠头的问题。但是,当我们查看一个运算放大器数据表中的谐波失真和噪声 (THD+N) 数值时,也许不能立即搞清楚哪一个
2018-09-12 11:44:13

谐波失真的标准

小弟做录音笔的,在测试FM的性能时候产生了点疑问,希望大神们可以帮忙解答下播放音频文件的时候谐波失真是指什么?有没有国家标准或者国际标准的数值,或者产业上的一个标准。录放部分失真度和FM失真度有没有一个国家标准的?能不能付上国标的文件,或者下载地址。
2012-08-30 17:29:00

最大限度地减小在汽车环境中的EMI,有什么好的实现办法吗?

请问如何最大限度的减小在汽车环境中的EMI?
2021-04-13 06:57:09

谐波失真的危害,谐波失真怎么计算?

什么是PF和THD谐波失真的危害,谐波失真怎么计算?PPFC原理及实现思路提高PF值的方法PFC电源调整输出电压的方法解决PFC和恒流的冲突
2021-03-11 07:57:33

音频系统对处理器芯片有什么要求?

音频系统对处理器芯片有什么要求?
2021-06-03 06:03:34

Android音频系统的相关资料分享

对于安卓音频系统,在前面我们已经讲了大致框架,嵌入式Android底层开发(六)Android音频系统_总体框架本专栏将对Android音频系统进行更细致的阐述,同时这些也是我的学习笔记,如有
2021-12-24 07:31:50

Cortex-M如何最大限度地提高SoC设计的能效端点

随着现代微控制器和SoC变得越来越复杂,设计者面临着最大化能源效率,同时实现更高水平的集成。最大限度地提高能量在低功耗SoC市场中,多个功率域的使用被广泛采用。在 同时,为了解决更高级别的集成,许多
2023-08-02 06:34:14

LTC1628-SYNC最大限度减少多输出,大电流电源中的输入电容

DN249-LTC1628-SYNC最大限度减少多输出,大电流电源中的输入电容
2019-06-17 08:42:47

PCB设计中有效减少谐波失真的方法

PCB设计中有效减少谐波失真的方法。
2021-04-23 07:14:55

SH7263数字汽车音频系统是如何构成的?

SH7263数字汽车音频系统是如何构成的?
2021-05-13 07:09:43

TDA2052有源音频系统电路

  这个TDA2052有源音频系统电路使用三个TDA2052芯片和5个扬声器(一个低音扬声器,两个高音扬声器和两个中音)。   对于此TDA2052 TDA2052有源音频系统电路,我们需要双20伏
2023-08-02 18:08:13

为车载音频系统设计选择合适的功放方案

功能模块。其作用是将音频输入的信号进行选择与入处理,进行功率放大,使电信号具有推动音箱的能力。车载音频系统对于功放多通道,高效率,低失真,智能化的要求,使功放模块设计人员在设计功放的时候要面临如下的技术
2011-03-08 20:58:30

优化的DC/DC转换器环路补偿最大限度减少了大输出电容器的数量

DN186- 优化的DC / DC转换器环路补偿最大限度减少了大输出电容器的数量
2019-08-06 07:09:13

使用谐波注入法降低PFC谐波并改善THD的方法

最大限度提高补偿效果。重复上面第一个步骤。即使 AC 频率改变了,基本频率也会自动更新,而且可生成基于该最新基本频率的最新正弦信号。该过程演示如下:图 1:后台环路中的谐波注入流程图相关博客:如何通过DFF 控制改善功率因数和THD最好校正“功率因数”如何将谐波失真降低至10% 以下
2018-09-12 09:47:28

使用DMM和交换机系统最大限度地缩短总体测试时间的技术

使用DMM和交换机系统最大限度地缩短总体测试时间的技术
2019-08-15 14:35:47

反激式拓扑中最大限度降低空载待机功耗的参考设计

描述 此项 25W 的设计在反激式拓扑中使用 UCC28740 来最大限度降低空载待机功耗,并使用 UCC24636同步整流控制器来最大限度减少功率 MOSFET 体二极管传导时间。此设计还使用来
2022-09-23 06:11:58

基于IIS总线的嵌入式音频系统该如何去设计?

本文介绍了一种基于IIS总线的嵌入式音频系统设计。
2021-06-04 07:10:22

如何减少PCB设计中的谐波失真

PCB为什么会将非线性引入信号内?如何减少PCB设计中的谐波失真
2021-04-21 07:07:49

如何最大限度减小电源设计中输出电容的数量和尺寸

使用LTspice评估系统电源输出端的不同电容图3.使用LTpowerCAD优化开关稳压器的控制环路,以及减少输出电容的数量在这种情况下,非常适合使用LTspice®这样的模拟工具。图2所示为针对图1提到
2022-06-14 10:19:20

如何最大限度减小电源设计中输出电容的数量和尺寸?

使用LTspice评估系统电源输出端的不同电容图3.使用LTpowerCAD优化开关稳压器的控制环路,以及减少输出电容的数量在这种情况下,非常适合使用LTspice®这样的模拟工具。图2所示为针对图1
2022-03-21 14:42:45

如何最大限度减少DUT上的电流负载?

在测量电源噪声中我们会面临各种挑战,包括RF干扰和信噪比(SNR),接下来我们来看如何在测量中实现高带宽,同时最大限度减少DUT上的电流负载?鉴于DUT是电源轨,我们不希望从它汲取太多电流。但是
2021-12-30 06:19:45

如何最大限度提高Σ-Δ ADC驱动器的性能

最大限度提高Σ-Δ ADC驱动器的性能
2021-01-06 07:05:10

如何最大限度的去实现LTE潜力?

如何最大限度的去实现LTE潜力?
2021-05-25 06:12:07

如何利用实时Java设计数字音频系统

如何利用实时Java设计数字音频系统
2021-06-02 06:51:27

如何将谐波失真 (THD) 保持在 10% 以下?

LED 照明领域普遍关注的问题一直是如何将谐波失真 (THD) 保持在 10% 以下。电源不但可作为非线性负载,而且还可引出一条包含谐波失真波形。这些谐波可能会对其它电子系统的工作造成干扰。因此
2022-11-23 06:16:06

如何将谐波失真降至10%以下

谐波可能会对其它电子系统的工作造成干扰。因此,测量这些谐波的总体影响非常重要。谐波失真可为我们提供信号 w.r.t. 基波分量中谐波含量的相关信息。更高的 THD 就意味着出现在输入电源端的失真越大或
2018-09-20 16:02:26

如何测量谐波失真以及所使用的功率因数计算

(如电机)谐波的载体。电压谐波会导致配电系统和连接到系统的负载出现问题(额外热量)。  测量谐波失真  对电路进行谐波故障排除时,应测量电压THD和电流THD。为获得最佳结果,电压THD不应超过5
2023-02-21 15:24:58

如何设计面向高清电视的全数字音频系统

如何设计面向高清电视的全数字音频系统
2021-06-08 06:46:05

如何采用1394技术最大限度地优化安全摄像头网络?

1394物理层所具备的优势是什么?如何采用1394技术最大限度地优化安全摄像头网络?
2021-05-25 06:25:20

布局电源板以最大限度地降低EMI

布局电源板以最大限度地降低EMI:第3部分
2019-08-16 06:13:31

怎么实现基于USB HOST音频解码器的数字音频系统设计?

怎么实现基于USB HOST音频解码器的数字音频系统设计?
2021-06-08 06:32:24

怎么实现基于智能接口的音频系统设计?

本文提出了一种智能多接口的全硬件音频系统的解决方案,使音频系统的扩展性进一步增强,原则上来说可以连接目前大多数主流存储设备,实现了一台设备多种用途的扩展。
2021-06-04 06:53:37

怎样设计智能手机的音频系统

模拟讯号路径中,便会造成噪声及谐波失真,并且占据板子空间。当手机遇上可携式电子,两个不同的音讯世界产生了冲突。这么多年过去,模拟工程师仍旧竭力打造可以完美处理语音、音乐播放和铃声的解决方案。本文将检视当前的技术进展,并探讨智能手机音频系统整合趋势。
2011-10-11 09:54:08

数据采集系统设计最大的挑战是最大限度减少噪声影响

  许多高速数据采集应用,如激光雷达或光纤测试等,都需要从嘈杂的环境中采集小的重复信号,因此对于数据采集系统的设计来说,最大的挑战就是如何最大限度减少噪声的影响。利用信号平均技术,可以让您的测量
2019-07-03 07:01:20

时钟采样系统如何最大限度减少抖动

就需要抖动小于 80 飞秒的时钟!这可通过假设一个无失真的理想系统进行计算,让 SINAD 和 SNR 数值相等(见公式 2)。接下来,使 ENOB 等于 14,我们可在大约 86db 下计算出最小
2022-11-21 07:26:27

瑞盟MS3121--车载音频系统的地隔离放大器

产品概述:MS3121 是一款应用于车载音频系统的‘地’隔离放大器。芯片可以很好地解决汽车音频系统中的绕线电阻问题,以及由车载电子设备带来的噪声问题。另外,芯片所需要的外围电容小,便于系统的集成
2019-08-13 10:16:34

用于并行采样的EVADC同步转换,如何在最大化采样率的同时最大限度减少抖动?

在我的应用程序中,HSPDM 触发 EVADC 同时对两个通道进行采样。 我应该如何配置 EVADC 以最大限度减少采样抖动并最大限度地提高采样率? 在用户手册中,它提到 SSE=0,USC=0
2024-01-18 07:59:23

耐福-NTP8849音频功放芯片介绍

主机接口总线由内部寄存器值来控制。具备24Bit,96KHz高品质音频数据处理,支持Hi-Res音频系统,其他品牌功放产品基本只有48K的数据处理能力。NTP8849主要特性描述:◆最大拥有60W最大
2022-01-20 15:01:37

请问pcb设计不好会不会引起谐波失真

pcb设计不好会不会引起谐波失真谐波失真是由哪些因素引起的?测试谐波失真有什么用
2019-09-30 04:53:04

高性能音频系统的两个关键器件(转)

,消除负载瞬态电压尖峰,从而提供更好的音频性能。一旦电源受到很好的调节,噪声减小到所需水平,下一个重要方面便是系统中的谐波失真,有很多因素可能会产生谐波失真(THD)。当原始音频信号受系统的电子器件
2019-03-15 12:06:49

高清音频系统的基础介绍

为响应客户对顶级音频质量的需求,音频系统设计人员正在研究高分辨率或高清(HD)音频,因为越来越多的中端系统买家需要以前只能在高端系统中使用的高清音频性能的类型。过去,44.1kHzCD品质采样频率
2022-11-14 06:51:11

高清音频系统的基础是什么?

信号转换为模拟音频信号的音频数模转换器(DAC),并且在数字域中提供其它音频处理,以进一步丰富高端系统中的客户体验。音频模块的另一个关键组件是音频放大器。音频放大器:AB类与D类为您的高清音频系统
2017-08-21 14:18:37

高清音频系统设计最重要的是什么

自处理器的数字音频信号转换为模拟音频信号的音频数模转换器(DAC),并且在数字域中提供其它音频处理,以进一步丰富高端系统中的客户体验。音频模块的另一个关键组件是音频放大器。 音频放大器:AB类与D类为您的高清音频系统
2019-03-25 06:45:13

谐波失真

谐波失真谐波失真的计算• 谐波失真的测试• 相关产品 谐波失真在一个理想系统中,一个正弦信号的快速傅里叶变换(FFT)会在一
2008-11-22 20:36:2864

基于VxWorks的音频系统的设计与实现

基于VxWorks的音频系统的设计与实现
2009-03-29 12:28:4817

基于粒子系统音频系统的烟花模拟

摘要:针对模糊物体的模拟方法存在着粒子数量绘制巨大、粒子运动状态复杂、计算耗时、实时性及逼真性不够等问题,提出了一种基于粒子系统音频系统的烟花模拟方法。
2010-09-03 00:52:5916

最大限度减少组件的变化敏感性的单运算放大器滤波器-Mini

最大限度减少组件的
2009-04-25 11:00:05702

最大限度减少组件的变化敏感性的单运算放大器滤波器-Mini

最大限度减少组件的
2009-05-05 11:13:30483

最大限度减少组件的变化敏感性的单运算放大器滤波器-Mini

最大限度减少组件的
2009-05-07 09:13:49612

笔记本最大限度延长电池的使用寿命

笔记本最大限度延长电池的使用寿命 本文将讨论如何有效地使用电池,以及最大限度地延长电池的使用寿命。本文将只讨论最新的XTRA这几个使用了锂电池的系列,对于较
2010-04-19 09:20:34851

基于MAX97001设计的单片音频系统方案

基于MAX97001设计的单片音频系统方案 Maxim公司的MAX97001是单声道音频系统,包括单声道扬声器放大器,立体声耳机放大器和模拟DPST开关. 扬声器和立体
2010-05-14 11:55:15776

背投电视的音频系统

背投电视的音频系统              从背投的
2010-01-04 16:55:551960

音频模拟开关的设计要素

   本文将阐释音频模拟开关的微小特性,以及如何利用总谐波失真(THD)、布局和性能来优化音频路径的保真度。  在中高端手机设计中,往往有分别来自基带、应
2010-08-04 16:42:511908

用于汽车D类音频系统的DirectFET2功率MOSFET系

  新推出的 AUIRF7640S2、AUIRF7647S2 和 AUIRF7675M2 器件,拓展了 IR 适用于汽车 D类音频系统的 DirectFET2 功率 MOSFET 阵营,并利用低栅极电荷 (Qg) 作出优化,来改善总谐波失真 (THD) 和提
2010-08-26 08:48:24758

基于ARM9的音频系统设计

本文利用 ATMEL公司 的 AT91RM9200型微处理器 和 Philips公司的 UDA1341型立体声音频编解码器设计了一种嵌入式音频系统。该嵌入式音频系统硬件部分采用基于IIS总线的音频系统体系结构,其主
2011-09-19 16:37:411850

opa2604高性能音频系统设计的专用运放

OPA2604是Texas Instruments公司为高性能音频系统设计的专用运放,具有超低谐波失真、低噪声、高增益带宽等特点。
2015-12-01 14:56:5172

Plunify推出Kabuto_可最大限度减少和消除性能错误

Plunify®基于机器学习技术的现场可编程门阵列(FPGA)时序收敛和性能优化软件供应商,今天推出了Kabuto™,可最大限度减少和消除性能错误。
2018-07-04 12:24:002657

音频系统性能是否高,这两个器件很关键

一旦电源受到很好的调节,噪声减小到所需水平,下一个重要方面便是系统中的谐波失真,有很多因素可能会产生总谐波失真(THD)。当原始音频信号受系统的电子器件影响而失真时,音频系统中就会出现谐波失真,导致输出音频信号与输入略有不同。
2019-02-20 14:35:563505

以数字音频系统为例介绍音频系统的构建

音频系统音频环境的构建包括两个方面,即记录采集(录音)和扩声回放(放音),下面以数字音频系统为例进行介绍。
2020-01-26 11:11:004245

理想二极管桥控制器最大限度减少整流器发热量和电压损失

理想二极管桥控制器最大限度减少整流器发热量和电压损失
2021-03-19 09:54:083

LTC3555 - 开关模式 USB 电源管理器和三路降压型稳压器,可实现更快速的充电并最大限度减少热量

LTC3555 - 开关模式 USB 电源管理器和三路降压型稳压器,可实现更快速的充电并最大限度减少热量
2021-03-20 20:02:201

LTC3567 - 集成 1A 降压-升压型稳压器和 I<sup>2</sup>C 接口的开关模式USB 电源管理器最大限度延长电池工作时间并减少热量

LTC3567 - 集成 1A 降压-升压型稳压器和 I2C 接口的开关模式USB 电源管理器最大限度延长电池工作时间并减少热量
2021-03-20 23:11:146

LTC3556 - 具开关模式 USB 电源管理器、一个降压-升压型稳压器和两个降压型稳压器的 PMIC 最大限度延长电池工作时间和减少热量

LTC3556 - 具开关模式 USB 电源管理器、一个降压-升压型稳压器和两个降压型稳压器的 PMIC 最大限度延长电池工作时间和减少热量
2021-03-21 08:17:269

蓄能电池管理系统最大限度提高电池监测精度和数据完整性

蓄能电池管理系统最大限度提高电池监测精度和数据完整性
2021-05-18 11:08:074

最大限度减少SiC FET中的EMI和开关损耗

SiC FET 速度极快,边缘速率为 50 V/ns 或更高,这对于最大限度减少开关损耗非常有用,但由此产生的 di/dt 可能达到每纳秒数安培。这会通过封装和电路电感产生高电平的电压过冲和随后
2022-08-04 09:30:05730

智慧家庭系列文章 | 如何最大限度减少智能音箱和智能显示器的输入功率保护

智慧家庭系列文章 | 如何最大限度减少智能音箱和智能显示器的输入功率保护
2022-10-31 08:23:540

高清音频系统的基础是什么?

高清音频系统的基础是什么?
2022-11-01 08:27:270

一次性按钮开关帮助最大限度延长闲置时间

一次性按钮开关帮助最大限度延长闲置时间
2022-11-04 09:52:060

时钟采样系统最大限度减少抖动

时钟采样系统最大限度减少抖动
2022-11-04 09:52:120

如何最大限度减少线缆设计中的串扰

如何最大限度减少线缆设计中的串扰
2022-11-07 08:07:261

AN2014_设计者如何最大限度使用ST单片机

AN2014_设计者如何最大限度使用ST单片机
2022-11-21 17:07:410

如何最大限度地提高电子设备中能量收集的效率

如何最大限度地提高电子设备中能量收集的效率
2022-12-30 09:40:14616

最大限度减少音频系统模拟开关的总谐波失真

THD规格在确定通过音频系统或由音频系统生成的音频信号的质量或保真度方面起着至关重要的作用。因此,在设计音频系统时,必须重视选择合适的元件和电路板布局,以最大限度地降低THD。
2023-01-16 15:55:451273

利用SigmaDSP最大限度地降低汽车音频系统的噪声和功耗

ADAU1401完整的单芯片音频系统包括一个完全可编程的28/56位音频DSP、模数转换器和数模转换器以及类似微控制器的控制接口。信号处理提供均衡、低音增强、多频段动态、延迟补偿、扬声器补偿和立体声
2023-01-30 09:25:012136

使用直角齿轮电机最大限度减少机器占地面积

使用直角齿轮电机最大限度减少机器占地面积
2023-03-09 15:16:36865

音频系统解决方案

音频系统解决方案
2023-03-15 20:33:480

减少谐波失真的六种必要技术

仍采用传统的谐波滤波方法来控制超出系统计量点的干扰,这些干扰会影响敏感过程和设备。这些过滤方法对于住宅和商业设施来说并不具有成本效益。本文探讨了可用于控制谐波减少电力系统中流动信号引起的失真谐波的技术。
2023-05-24 11:27:382166

最大限度地利用太阳能让您的家保持温暖

电子发烧友网站提供《最大限度地利用太阳能让您的家保持温暖.zip》资料免费下载
2023-06-13 15:20:060

LTspice可最大限度减少设计重新设计并加速您的仿真

开关稳压器,使用户能够在短短几分钟内查看大多数开关稳压器的波形。   精密的图形用户界面 LTspice是一种易于理解的电子电路模拟器,它使用户不仅可以查看数值数据,还可以查看模拟结果的图形波形。 通过与LTspice 链接最大限度减少设计重新设计并加速您的仿真 Quadcept允许用户为
2023-06-26 16:04:18623

音频系统解决方案

音频系统解决方案
2023-07-06 19:45:020

切换以最大限度地利用SAN

电子发烧友网站提供《切换以最大限度地利用SAN.pdf》资料免费下载
2023-09-01 11:23:250

最大限度减少SIC FETs EMI和转换损失

最大限度减少SIC FETs EMI和转换损失
2023-09-27 15:06:15236

最大限度提高∑-∆ ADC驱动器的性能

电子发烧友网站提供《最大限度提高∑-∆ ADC驱动器的性能.pdf》资料免费下载
2023-11-22 09:19:340

最大限度保持系统低噪声

最大限度保持系统低噪声
2023-11-27 16:58:00161

如何最大限度减小电源设计中输出电容的数量和尺寸?

如何最大限度减小电源设计中输出电容的数量和尺寸?
2023-12-15 09:47:18183

已全部加载完成