石墨烯,这个大家熟悉又陌生的特殊物质,在2004年英国曼彻斯特大学的物理学家安德烈·海姆(AndreGeim)和康斯坦丁·诺沃肖洛夫(KonstantinNovoselov)在实验室巧妙地用机械剥离法制得今天备受瞩目的二维结构的石墨烯,并因此也获得了2010年的诺贝尔物理学奖。
当然,在石墨烯这种特殊材料出现后,各种科学家开始疯狂地以它为研究对象展开各种性质的探讨。当他们的研究成果公之于众时,石墨烯的新奇的特殊性质也不得不使我们瞠目结舌。对于其力学性质,曾经美国一位名叫杰弗雷。基萨的机械工程师提出了这样一个比喻——如果有一张和保鲜膜一样薄的石墨烯薄膜,然后想用一根很尖锐的铅笔去戳穿它,那得需要有一头大象站在这根铅笔上使力,才能将其戳穿。这样可想而知,他拥有多么独一无二而又强大的力学性质。
更值得关注的是,它的电学性质也十分奇特。实验表明,石墨烯所有的电子的运动速率大约都是光子的1/300,这远远超过了电子在以半导体中的速度,使它具有超强的导电性。然而,由于石墨烯是带隙为零的良导体,我们便不能有效地调控它的电学特性,从而不能将它广泛运用在电子器件之中。因此,我们需要采取特殊手段来调整石墨烯的带隙,使之具备半导体特性,然而,其中最有效的方法之一便是向石墨烯中掺入杂质原子。
对于石墨烯的掺杂技术,现在的科学研究也有许多方法,当然他们各自的优缺点也是至关重要的,因为这将影响石墨烯的掺杂效果。下面便是其中一些常用的技术方法。
化学气相沉淀法(亦叫CVD法)
化学气相沉淀,顾名思义,利用化学气体进行反应,之后的生成物再沉淀在衬底上以制备所需的物质。
在石墨烯的掺杂过程中,若用此法,可以大大提高效率。因为目前最有效的制备石墨烯薄膜的方法之一就是利用CVD法来制备,然而,如果我们在制备石墨烯的过程当中就加入掺杂原子,这样制出的掺杂石墨烯掺杂效率将更高。
我们就拿制备掺氮石墨烯的过程举例吧。在利用CVD法制备掺氮石墨烯的时候,是利用甲烷(CH4)和氨气(NH3)来提供碳源和氮源在特殊的反应炉里发生高温的氧化还原反应。气态的甲烷和氨气进行反应后生成的C在高温下也呈气态,在遇到衬底后会薄薄地附在衬底表面,由于反应气体中还有N原子,它在反应当中也是有很大作用的。在C原子沉淀在衬底的途中,因为N原子的数量也是不可忽略的,它也会随着C原子一起沉淀到衬底上,这样最终在衬底上生成的物质就是碳原子、碳原子混合薄膜,也就是我们想要制备的掺氮石墨烯薄膜。
我们可以发现,这种方式制备起来效率较高,且操作也不是很困难。但就是设备技术要求较高,需要相应的一些高水平的设备才能精确无误地实现该实验,成本也是相当高的。
离子注入法
要使用该方法,前提是已经拥有了一张制备好的石墨烯薄膜了。因为该方法是基于石墨烯薄膜来实现的。而该方法的操作也不是很复杂,但需要一台高能离子注入设备。我们将准备好的石墨烯薄膜置入离子注入机内,之后利用离子注入机将所需掺入的杂质原子以高能粒子束的方式注入到石墨烯薄膜中。
该方法的原理其实也不难理解。我们知道,晶体表面都存在缺陷。所谓缺陷,就是晶体表面的原子排布序列出现异常,比如出现空缺等。而这样的空缺位置对于掺杂来说是相当重要的,因为我们正是要将杂质原子给“安装”在这些空缺位置中以来填补这些空位,使这个到处是空洞的晶体表面又被填的饱满,最后也就完成了掺杂的目的。而高能粒子束具备两个功能,一个是“高能”,而另一个是“粒子束”,为什么这么说呢?因为“高能”是为了让该粒子束具有高能量,以使之能够有足够能量破坏石墨烯中C原子环的结构,使某些C连接断开而制造出“空位”。而“粒子束”是为了提供杂质原子,将产生的空位迅速填补上杂质原子,最终以制得掺杂的石墨烯。
但是该方法任然存在和上面一个方法相同的问题——对于设备技术要求较高,成本花费也比较大。
氧化石墨烯掺杂法
利用该法制备掺杂石墨烯所需要准备的是氧化石墨烯薄膜。而氧化石墨烯的制备比石墨烯的制备就要简单且耗费也不大,并且制备条件也不用高温等的苛刻条件,室温下便可进行(当然,最后还是要稍稍高温将制备的氧化石墨烯溶液烘烤成膜,但温度远没制石墨烯的高)。当有了氧化石墨烯薄膜,(我们仍以掺氮石墨烯为例)便可将该膜和一些含氮化合物如尿素或三聚氰胺等放入相应的反应炉中进行高温反应。由于含氮化合物在高温下会分解出许多含氮气体(如氨气等),他们会与氧化石墨烯表面的含氧官能团(如羧基等)发生相应的有机反应,以生成含氮的官能团,从而达到掺杂的目的。
由此过程我们可以发现,该方法过程较前两者复杂些,不过最大的优点就是成本较低。但是该法最大的缺点就是最后制备的掺杂石墨烯可能会含有我们不希望出现的杂质原子,如氧原子等,这也是该法最致命的的缺点。而这些非理想杂质的掺入势必会影响整个理想掺杂石墨烯的特性,给随后的实验带来许多未知的困难。所以还是那句话,“一分钱一分货”。但是,对于一些实验精度要求不是特别高的,且资金不是很充裕的情况下,可以适当考虑该法。
现在,关于掺杂石墨烯的研究和应用也越来越多,其中有很多科学家以制备的掺杂石墨烯为核心材料而制备出了各种MOS管、光电管等,并且对他们所具备的特性进行了详细的研究,也发现了许多独特的优势。这样看来,掺杂石墨烯在材料领域以及电子领域拥有潜质性的发展及应用,甚至可能在某些方面能够改变我们的生活,哪怕是一点点,也将是一个巨大的成功。
相关推荐
石墨烯是一种原子级薄层2D碳纳米材料,具有以六方晶格结构排列的sp2键碳原子。石墨烯因其优异的物理和....
发表于 2023-10-24 09:35•
12次阅读
传感新品 【湖南大学和南华大学:研究新型超低电位电化学发光适配体传感器】 近日,湖南大学蔡仁和南华大....
发表于 2023-10-20 08:43•
107次阅读
VR/AR一体机是将独立运算系统、光学显示系统、音频系统、感知交互系统高度集成在一体空间的头戴式智能....
发表于 2023-10-17 10:07•
89次阅读
市场研究机构IDTechEx指出,随着硅基器件尺寸逼近物理极限,硅柔性化处理已日趋接近天花板;碳基材....
发表于 2023-10-15 11:57•
144次阅读
从堆垛结构上看,石墨烯纤维接近传统石墨;而从宏观形态上看,它类似于碳纤维。石墨烯粉体通过与高分子复合....
发表于 2023-10-12 16:19•
77次阅读
为了解决这些缺陷,由芝浦理工学院超导材料能源与环境实验室的 Muralidhar Miryala 教....
发表于 2023-10-10 17:44•
138次阅读
石墨烯强度很高,根据原子力显微镜基于悬浮石墨烯的压痕实验得到的单个石墨烯片的弹性模量 约为1Tpa,....
发表于 2023-10-09 15:32•
23次阅读
这一理论是根据机体的各种生物活性分子(核酸、蛋白质、糖、脂肪)的化学组成空间的构象与分子的功能活性之....
发表于 2023-10-08 16:36•
111次阅读
与染料敏化太阳能电池一样,钙钛材料也覆盖在电荷传导空心支架上,作为光吸收剂使用。伊朗研究小组开始用转....
发表于 2023-10-08 14:33•
436次阅读
电热膜就是一种通电后能发热的薄膜。它是由电绝缘材料与封装其内的发热电阻材料组成的平面型发热元件。因为....
发表于 2023-09-28 10:23•
182次阅读
眼动追踪通常涉及从用户眼睛反射红外光,并使用图像处理算法分析反射信号,以测量眼睛位置、运动和瞳孔扩张....
发表于 2023-09-20 16:45•
269次阅读
传感新品 【巴塞罗那科学技术研究所:研究人员使用石墨烯和量子点设计用于眼动追踪应用的半透明图像传感器....
发表于 2023-09-20 08:46•
502次阅读
背景 Ping-Heng Tan教授在北京中国科学院的研究重点是二维层状材料的光学性质。这还包括相关....
发表于 2023-09-18 14:49•
86次阅读
为了减小界面处的晶格形变,提高电子透射性能,我们基于STGNR和5-STGNR纳米带,设计了全新的自....
发表于 2023-09-12 17:59•
190次阅读
石墨烯因其广泛的奇妙特性而经常被称为“奇迹材料”。这些特性使石墨烯超越了其他添加剂材料,从此成为许多....
发表于 2023-09-12 10:17•
417次阅读
六方氮化硼和石墨烯都是仅一个原子厚度的层状二维材料,不同之处在于石墨烯结合纯属碳原子之间的共价键,而....
发表于 2023-09-12 09:32•
293次阅读
基于石墨烯的二维材料由于其优异的结构、机械、电学、光学和热性能,最近成为科学探索的焦点。其中,基于氧....
发表于 2023-09-11 11:40•
267次阅读
目前市场上石墨烯电热膜应用较广 ,大家都知道,只要接通电源,发热材料短时间内迅速升温,达到控制器的设....
发表于 2023-09-11 10:19•
215次阅读
本文从石墨烯基薄膜的制备方法和影响其散热性能的关键因素等方面综述了近年来石墨烯基薄膜的研究进展。很难....
发表于 2023-09-07 10:21•
200次阅读
引言:随着5G通信技术的推广和普及,散热已经成为电子设备中的一个普遍问题。自20世纪60年代以来,随....
发表于 2023-09-07 10:07•
310次阅读
G+BOARD 与意大利的Nanesa和Centro Rierche Fiat等多家工业合作伙伴合作....
发表于 2023-09-04 15:48•
240次阅读
近年来,能够生产无缺陷单层石墨烯和其他2D材料的生长技术得到了长足的发展。
发表于 2023-09-04 10:30•
161次阅读
由于原子尺度的限制,二维层状材料中的层间空间可以用于研究离子、原子和分子在限域空间中的异常行为,如无....
发表于 2023-09-04 10:25•
290次阅读
CVD因具有可控、高质量生长石墨烯的优点而引起国内外关注,据报道石墨烯薄膜可在多个衬底上生长,如Fe....
发表于 2023-09-01 11:12•
133次阅读
不同形式的石墨烯材料可根据应用和技术的要求,选用不同制备方法得到。这些不同的制备方法给技术人员和产品....
发表于 2023-08-31 16:37•
192次阅读
石墨烯(Graphene)是一种二维碳材料,是单层石墨烯、双层石墨烯和多层石墨烯的统称。目前,国内将....
发表于 2023-08-31 15:47•
307次阅读
据了解,本次公布的第一批前沿材料产业化重点发展指导目录聚焦已有相应研究成果、具备工程化产业化基础、有....
发表于 2023-08-29 16:43•
351次阅读
多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些....
发表于 2023-08-29 11:10•
188次阅读
8月28日,工信部和国务院国有资产监督管理委员会发布《关于印发前沿材料产业化重点发展指导目录(第一次....
发表于 2023-08-29 09:34•
210次阅读
“石墨烯”又名“单层石墨片”,是指一层密集的、包裹在蜂巢晶体点阵上的碳原子,碳原子排列成二维结构,与....
发表于 2023-08-28 14:58•
252次阅读
传感新品 【华东师范大学:研发防水自清洁CBNP/石墨烯应变传感器,用于多功能应用】 可穿戴应变....
发表于 2023-08-24 08:45•
256次阅读
Sixonia Tech GmbH 的专有技术是一种电化学剥离方法,从石墨中提取少量石墨烯,并同时用....
发表于 2023-08-23 15:10•
355次阅读
随着集成技术和微电子技术的发展,功率元器件的功率密度不断增长,而电子元器件及设备逐渐趋向于集成化和小....
发表于 2023-08-23 10:39•
108次阅读
石墨烯有助于解决世界水危机,由石墨烯制成的膜可以让水通过,但把盐过滤掉。换句话说,石墨烯可以彻底改变....
发表于 2023-08-23 09:47•
134次阅读
使用轻型的头盔、防弹夹克、西服、靴子等人员防护设备,对于减轻士兵的后勤负担,而不影响这种设备对爆炸和....
发表于 2023-08-22 09:28•
99次阅读
传感新品 【长春工业大学:研发PAM@SiO2-NH2/石墨烯导电水凝胶传感器】 导电水凝胶因其在软....
发表于 2023-08-21 17:24•
595次阅读
该电容式多传感器阵列由集成在机器人抓手的臂端工具对上的接近和压力传感器阵列和可编程控制单元组成,是在....
发表于 2023-08-21 16:42•
390次阅读
石墨烯添加相的不同形态对其复合材料的性能有重要影响,石墨烯的薄膜形态和其排列是研究的热点,图2汇总了....
发表于 2023-08-21 15:36•
218次阅读
石墨烯作为一种由单层碳原子构成的二维材料,凭借其卓越的电子性质引起了广泛关注。科学家一直在积极研究石....
发表于 2023-08-21 15:32•
122次阅读
为了配制新的生物复合材料,科学家们使用二异氰酸酯对竹子样品进行改性,发现它降低了纤维的亲水性,并增强....
发表于 2023-08-21 15:28•
276次阅读
锂离子电池具有能量密度高、可逆容量大、开路电压大、使用寿命长等特点。在对锂离子电池电极材料的研究过程....
发表于 2023-08-18 10:25•
62次阅读
石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,并有如下的特点:碳原子有4个价电子....
发表于 2023-08-18 10:15•
295次阅读
石墨烯涂层是涂在材料表面的一层薄薄的石墨烯。石墨烯是碳原子的二维晶格,具有高机械强度(1100 GP....
发表于 2023-08-17 11:37•
271次阅读
GAF超宽带天线覆盖3.7 GHz至67 GHz的频率范围,带宽(BW)为63.3 GHz,比铜箔天....
发表于 2023-08-17 09:33•
217次阅读
该研究首次应用紫外光辅助原子层沉积(UV-ALD)技术于石墨烯表面,并展示了利用UV-ALD沉积Al....
发表于 2023-08-16 15:52•
165次阅读
近年来,通过将两片稍微歪斜的石墨烯堆叠在一起,产生了非凡的物理现象,包括可调超导性、量子记忆,以及涉....
发表于 2023-08-16 10:51•
199次阅读
传感器分为柔性传感器和非柔性传感器,非柔性传感器应用很广泛,但是存在很多弊端和局限性,这类传感器的主....
发表于 2023-08-16 09:56•
158次阅读
他们从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分....
发表于 2023-08-16 09:40•
409次阅读
引言:石墨烯(Graphene)是一种以sp²杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材....
发表于 2023-08-15 10:27•
214次阅读
目前绝大多数研究采用机械剥离和逐层转移的物理方法对转角石墨烯样品进行制备,然而,该方法存在条件苛刻、....
发表于 2023-08-14 11:37•
203次阅读
石墨烯作为一种特殊的二维材料,具有高导电性、 高比表面积以及优异的化学和机械稳定性,金属氧化物纳米颗....
发表于 2023-08-11 10:45•
82次阅读
在近年来,随着科技和物理学界的飞速发展,石墨烯成为了一个热门话题。它的出现为各种现代电子设备和技术带....
发表于 2023-08-11 10:25•
723次阅读
随着集成技术和微电子技术的发展,功率元器件的功率密度不断增长,而电子元器件及设备逐渐趋向于集成化和小....
发表于 2023-08-09 16:05•
198次阅读
大多数基于石墨烯的气体传感器具有薄的层结构。一个单独的原始或CVD石墨烯片可以被转移到一个刚性或柔性....
发表于 2023-08-09 10:10•
140次阅读
将石墨烯填充到聚酰亚胺材料中制备复合材料,能较大程度地提升聚酰亚胺复合材料的力学性能、热力学性能以及....
发表于 2023-08-08 12:27•
203次阅读
瑞典的GraphMaTech公司旨在减少对铜的需求,用石墨烯取代部分铜。与单独的铜相比,铜-石墨烯复....
发表于 2023-08-07 15:17•
414次阅读
超导若能实现工程应用,意味着人类能源储存和传输效率产生颠覆性改变;而超导材料的应用,也意味着在计算机....
发表于 2023-08-07 11:08•
468次阅读
南孚公司近期推出了一款备受用户青睐的石墨烯纽扣电池,具有强劲且持久的电力输出。石墨烯作为一种珍贵材料....
发表于 2023-08-03 17:20•
808次阅读
虽然还有其他研究石墨烯瑕疵的方法,但这些方法都有缺点。例如,拉曼光谱无法区分某些缺陷类型,而高分辨率....
发表于 2023-08-03 15:10•
254次阅读
Teledyne Labtech 将合成石墨薄层嵌入射频和微波 PCB 的方法可以有效地将热量从有源器件中传导出去。据该公司称,...
发表于 2022-04-01 16:01•
9555次阅读
什么是硅基CMOS技术?
如何去实现一种石墨烯CMOS技术?
...
发表于 2021-06-17 07:05•
2743次阅读
用石墨烯电导率变化实现太赫兹调制
发表于 2020-12-31 06:05•
2114次阅读
近年来,随着手机游戏的兴起,智能手机作为游戏机的功能也越来越突出,因此在智能手机领域中出现了游戏手机的新品...
发表于 2020-12-18 07:34•
10074次阅读
一、引言
2010年,诺贝尔物理学被两位英国物理学家安德烈·海姆和康斯坦丁·诺沃肖诺夫夺得,他们因制备出了石墨烯而...
发表于 2019-07-29 07:48•
3827次阅读
好像***最近去英国还专程看了华为英国公司的石墨烯研究,搞得国内好多石墨烯材料的股票大涨,连石墨烯内裤都跟着炒作...
发表于 2019-07-29 06:40•
5581次阅读
碳原子呈六角形网状键合的材料“石墨烯”具有很多出色的电特性、热特性以及机械特性。具体来说,具有在室温下也高达20...
发表于 2019-07-29 06:27•
7039次阅读
1 引言
人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离...
发表于 2019-07-29 06:24•
3385次阅读
场效应管(FET)是一种具有pn结的正向受控作用的有源器件,它是利用电场效应来控制输出电流的大小,其输入端pn一般工...
发表于 2019-07-29 06:01•
3673次阅读
传统的太阳能电池板面临着一些问题,比如光污染。太阳能电站的电池板反射的光线能对飞过的鸟类造成伤害,对此像特斯拉...
发表于 2019-07-16 08:28•
2629次阅读
评论