IGBT,IGCT和IEGT分别是什么,区别和共同点是什么?
IGBT与集成门极换流晶闸管IGCT对比
受当前技术水平限制,IGBT的工作电流相对较小,比较常用的中高压大功率IGBT有1700V/ 2400A、3300V/1200A、4500V/900 A、6 500 V/600 A等几种规格,采用单元件的变流器输出容量一般不超过1.6 MVA,如要进一步增加输出容量,只能采用元件并联或变流器并联的方式。无论是采取元件串联或并联使用还是采用变流器并联的方法,都会增加系统的复杂性,导致效率和可靠性的降低。
IGCT和GTO相比有着更明显的优势:(1)无需关断吸收电路,可减小变流器的体积和重量,提高变流器的效率和可靠性,降低成本;串联使用时虽需关断吸收电路,但体积比GTO的小很多;(2)门极驱动电路集成在IGCT内,对外只有门极驱动供电接口和用于传输触发信号和反馈状态的光纤,可提高变流器抗电磁干扰能力;(3)通态和关断损耗较小。下图是3.3kV下IGBT、GTO和IGCT对比。
图1:IGBT与IGCT、GTO对比
通过上图对比可以看出:IGCT损耗更少。三种器件的关断损耗相差不大,导通损耗IGCT和IGBT相差两倍,但IGCT驱动功率要远比IGBT大。总之,IGBT在较低电压应用时,IGBT的导通损耗较低,所以性价比高。而IGCT在较高电压时性价比高。根据使用场合和设计标准,在1800V~3300V两者之间有重叠。
IGBT与电子注入增强栅晶体管IEGT对比
IGBT是一种MOS门极器件,它的门极由电压驱动,开关速度高,因此在高频领域得到了广泛应用,但它也有一些问题,例如工作电压低,容量小,导通压降和损耗高,这也限制了它的应用。而IEGT是一种兼备其优点,克服其缺点的新器件。近年来已经形成了商用产品。与传统器件相比.它具有通态压降低,门极驱动电流小,功率密度大,开关损耗小,速度快的优点。图2为IEGT和GTO门极参数对比,图3为针对典型规格的4.5KV/3kA IEGT、GTO、IGCT性能对比。
图2:IEGT和GTO门极参数对比
图3:针对典型规格的4.5KV/3kA IEGT、GTO、IGCT性能对比
IEGT的优越性能决定了它非常适合在各种大功率变流器中使用。IEGT内部已集成了一个快速的反并联二极管,且IEGT具有很宽的安全工作区并能承受较高的dv/dt和di/dt,因此IEGT逆变器无需阳极电抗,只需公用一个关断吸收电路。此外,IEGT门极驱动功率不到lW,门极驱动模块体积很小。由于IEGT逆变器使用元件数量少,因而可靠性也得到很大提高。其典型特点如下:
●与GTO一样具有低的导通电压降;
●与IGBT一样具有宽的安全工作区;
●门极采用电压驱动方式;
●较高的工作频率500-1000Hz;
●高可靠性。
综上比较,IEGT将GTO和IGBT的优点集于一身,它具有导通压降低、工作频率高、电压型门极驱动、安全工作区宽、易于串联使用等优点。
从功率等级和电压等级上来讲,IGCT、IEGT与IGBT的定位远不相同,IGCT及IEGT主要应用在高压大容量的场合,IGBT应用在低压高频小容量场合。综上两节所述,得到如下结论:
●IGCT、IEGT开关频率都很高,在500-1000Hz之间,虽然远不及IGBT高,但在很多场合已经足够。
●IGCT是电流脉冲驱动,驱动功率比较大,但其门极驱动电路集成在IGCT内,对外只有门极驱动供电接口和用于传输触发信号和反馈状态的光纤,驱动体积小且简易。IEGT是电压驱动型器件,驱动功率与IGBT差不多。
●IGCT是晶闸管的复合管,可直接串联,因此不必过多考虑均压措施。而IGBT在串联使用时应考虑均压措施。
●IGCT与IEGT导通和关断损耗都很低,尤其是IGCT,如果不计驱动功率,同电压等级的IGCT损耗要比IGBT更低。
●对于IGCT和IEGT来说,4.5kV/3kA是较常用的规格,其容量和电压等级要远比IGBT大得多,更适合应用在大功率FACTS装置及大功率传动装置中。
变压器结电容真的能使IGBT线路失效?
GBT的集电极电压变化率,取决于与门极间等效电容在驱动电流作用下对应的电压变化率。当IGBT门极电压变化到门极电流与工作电流相当的时刻,门极电压将不再变化。驱动器输出的电流将对门极和集电极之间的等效电容充放电,实现门极电位的变化。因此这个电位变化过程本身是对应于该条件下对电容的恒流充电过程,其开始和结束都是近似于阶跃性质的。因此,总体上该干扰电流的函数具有门函数的特征。
对于该干扰电流对电路系统影响的分析。应该采用类似小波变换的各类分析工具,从瞬时频谱分析的角度去识别那些携带能量较多的瞬时频率分量的特征。而不应该是采用基于傅氏变换的全时域分析。原因是这一类全时域分析的结果实质上是在瞬时频域分析结果的基础上,进一步在时间上求平均的结果。这将导致信号实时特征的畸变和丢失。不能真实地反映问题。
不管采用何种瞬时频率分析方法都将与宏观上的电流函数特征相接近。那就是主要的瞬时频率成分存在于门函数周期对应的频率点以上,且较为接近。同时由于上升下降沿的存在。在相对较高的频段也含有相当一部分分量。这就使该干扰电流的主要瞬时频率分量集中在低频和高频两大部分。
其中,低频部分的频率大致是对应IGBT上升下降时间所决定的电流持续时间。在数百纳秒至数微秒量级,大致对应1至10兆赫兹这一区间。而高频部分则是来自门函数的上升下降沿速率决定的频率。但这主要取决于耦合通路自身的频率特性。应该是明显高于低频部分的。进一步考虑到实际中杂散参量对该电流的低通能力。实际中的高频分量应该处于数百兆赫兹的水平。
而1至10兆赫兹又是一个比较敏感的频段。它是pcblayout中共点接地和多点接地的混叠区间。这意味着地线系统中感抗成分达到甚至超越阻抗成分成为主要因素。电流的分布路径变得更加复杂且相对比较集中。由于该频段下线路的感抗特征和阻抗特征都比较明显,但还没有高至杂散电容发挥作用,因此表现出的线路电抗值是比较大的。在相互连接的两点之间具备形成较大电压的条件。这部分的干扰电流虽然占据主体,能量很大。但是频段相对较低,主要的影响还是集中在信号收发端之间形成的地电势差上。这将导致数字信号电平判定阈值裕度的损失。使发生逻辑错误的概率提高。
数百兆赫兹的高频分量将表现出明显的高频电流特征。并且应该是高于或接近多数主控芯片的工作频率。大家知道,高频数字电路中去耦电容的谐振频率应该是以电路最高工作频率作为最佳点。而如果干扰电流的频率高于电路最高工作频率则很可能使去耦电容表现为感性。结果是在电流对电路整体补充电荷以达成电荷平衡(形成等势体)的过程中,会导致电源电压的较大波动(尤其是电路接地处理不良的时候)。从该电流的功率级别来讲,由于是来自IGBT的开关动作。因此具有电流源性质。其能量足以引发电源完整性问题。比如CMOS器件最危险的闩锁问题。其危害之大是可想而知的。
通过以上的内容可以看到,变压器结电容相对于电压变化率过大,确实会为IGBT带来较大的影响,尤其是对共地的电路系统的影响尤其大。在选择IGBT驱动器的时候,需要根据系统的实际情况充分考虑该因素。对于控制电路复杂的系统要尤为注意。需要说明的是。比较不同驱动器在这一方面的差异时,不能仅注意结电容的数值。需要格外关注其变压器结构上的差异。当然对于成熟的驱动产品。相信不同级别的驱动器必然有不同级别的隔离能力。只要不出现小马拉大车的情况即可。但是对于自制的驱动产品就很有必要比较与同类成熟产品之间在变压器结构上的差异。比如绕组的间距,绕组投影面积,绕组结构等因素。以便实现比较可靠的自我评估。切不可仅仅以实测的电容值作为唯一比较参数。
本文对电子电路设计过程中IGBT失效分析情况进行了讲解,并通过不同的方面来对其中的原理进行分析,帮助大家理解其中的知识点,希望大家在阅读过本文之后能够有所收获。