您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子元器件>IGBT>

数字型IGBT的设计与实现,IGBT过流的检测方法

2017年05月25日 09:50 网络整理 作者: 用户评论(0

  数字型IGBT的设计与实现:

  1引言

  随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响。

  传统利用模拟电路实现的IGBT驱动器技术较成熟,运行稳定,但是由于其驱动器各参数设置大都采用硬件实现,参数调整比较复杂,不同型号的IGBT必须设计不同的驱动器,本文利用数字控制器对栅极控制,可以灵活的修改驱动器的软件参数设置,来调整IGBT工作的性能,对于不同的IGBT型号,只需要加载不同的驱动程序,即可以解决传统驱动器产品的型号匹配问题。

随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响

  如图1示,驱动器主要包括:高等级隔离电源、光纤通信接口、功率放大电路、检测保护电路、数字控制器等五部分。

  2.1高等级隔离电源

  高压IGBT驱动器设计中,电源设计是关键部分之一,电源的输出功率决定了IGBT在实际工作中能够使用的工作频率,如果电源输出功率不足,可能会在IGBT器件高频工作时,出现欠压现象,导致IGBT损耗增加,甚至造成IGBT损坏。

  本设计中采用Ti公司的LM5025芯片设计反激式DC-DC电路(电路图见图2),电路中的初级具有电流检测软起动功能,当电流检测电阻上的压降达到0.25V时,对电源起到很好的过流保护作用。

随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响

  2.2光纤通信接口

  在用户主控系统通信的接口设计上,选择抗干扰能力强的光纤通信,防止控制信号被干扰出现误触发。光纤选用HFBR-1522、HFBR-2522,光纤电路如图3。

随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响

  2.3功率放大电路

  选择导通阻抗非常低的mosFET作为开关器件,构成IGBT栅极功率输出电路,如图4,同时,采用多个栅极电阻切换的方式,实现不同条件下对IGBT性能的调整。在IGBT正常开关时,可以通过调整栅极电阻来控制器件的开关速度,达到优化器件效率的目的。在IGBT出现工作异常时(例如短路),可以通过调整栅极电阻来控制器件的工作状态,防止器件损坏达到保护器件的目的。

随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响

  2.4检测保护电路

  为防止IGBT器件工作中出现任何异常故障,驱动器需要对IGBT的状态参数进行检测,如果发现异常,驱动器自动采取保护动作,并通知主控器。

  欠压检测:目前各个IGBT厂商推荐IGBT器件工作时的栅极电压为±15V(栅极最大承受电压为±20V),如果IGBT器件在工作中出现低于15V的情况,根据IGBT器件饱和压降VCE与栅极电压的关系(如图5示),随着栅极电压的下降,IGBT饱和压降会增加,造成IGBT器件损耗增加,有可能会损坏器件,所以,必须对驱动器输出栅极的电压进行检测,如果出现欠压开通情况,驱动器要立即进行保护。同时需要注意,IGBT的短路电流与栅极电压成正比,所以当器件开通时栅极出现高于+15V电压,器件如果出现故障会出现比正常工况更大的短路电流,所以驱动器必须确保栅极开通电压处于合理的范围内。

随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响

  Vce电压检测:Vce电压检测可以为数字控制器提供IGBT器件参数,控制器通过Vce电压可以判断IGBT的工作状态,从而采取对应的策略对IGBT进行不同的控制方式。

  过压保护:在IGBT器件关断过程中,由于母线回路寄生电感的存在,关断电压会产生一个电压过冲尖峰,过冲幅值为△V=Ls*di/dt,如果尖峰电压超过IGBT器件的额定电压,IGBT器件会被击穿,造成器件损坏。

  过压保护电路采用的是TVS管与限流电阻串联的方式,由集电极接入栅极(如图6示),当关断过程中集电极出现超过设定值(设定值小于IGBT额定值)的电压尖峰时,TVS管反向导通,通过限流电阻向栅极注入电流,减慢IGBT关断速度(减小di/dt),从而达到限制电压尖峰的目的。用户根据具体的应用工况,选择适合的TVS管的数量和单个TVS击穿电压参数。

随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响

  di/dt检测:(如图示7),IGBT模块内部等效图可以看到,由于IGBT模块内部链接的主电极回路与辅助电极回路之间存在寄生电感,在IGBT模块工作时,主电流IC从主电极流入,经过寄生电感L流出,依据电感感生电压V=-L*di/dt,从公式可以看出,感生电压V值与di/dt值成正比关系,通过检测L上产生的感生电压可以获得主电流Ic的di/dt值。在IGBT模块工作的过程中,如果感生电压高于或低于设定值都认为器件di/dt出现异常状态,需要进行保护,并向主控系统报告出现di/dt故障。

随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响

  数字控制器功能

  数字控制器主要完成根据输入信号控制功率放大电路,驱动IGBT器件。同时,根据检测电路的反馈信号判定IGBT器件的工作状态,如果出现异常状况,立即按照设定策略对IGBT器件进行保护。

  4 驱动级测试

  为初步确定驱动级基本功能的正确性和可行性,利用图8样品板进行测试,测试样品为3300V-1500A IGBT模块,采用通用型双脉冲测试方法,测试波形如图9。


随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响

  从上图测试结果可以看出,驱动板可以在测试条件下安全的开通和关断IGBT模块。

  5 改进方向

  本论文提出的数字型IGBT驱动器在过压保护检测上采用的TVS管串联的方式,只可以对IGBT器件关断中di/dt产生的寄生过压有较好的效果,但是这种方法也存在弊端,如果用户对于过压保护的阈值设定不合理,及系统在运行中会出现较多的过压,或较长时间过压,此时IGBT器件会出现栅极被高压损坏,或本应关断的IGBT被动强行开通,出现上下管短路的状态,损坏上下管IGBT。所以可以加入Vce检测电路,实时检测集电极电压,制定保护策略。

  IGBT过流的检测方法:

  IGBT(绝缘栅双极型晶体管)兼有场效应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件。 IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率 过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可使IGBT锁定失效,同时高的过电压会使IGBT击穿。因此,当出现短路过流时,必须采取有效的保护措施。

  为了实现IGBT的短路保护,则必须进行过流检测。适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降Vce,因为管压降含有短路电流信息,过流时Vce增大,且基本上为线性关系,检测过流时的Vce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。

  在短路电流出现时,为了避免关断电流的 过大形成过电压,导致IGBT锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。

  在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7。5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。

  为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。

  下面是几种IGBT短路保护的实用电路及工作原理

  (1)利用IGBT的Vce设计过流保护电路

  图1是利用IGBT过流时Vce增大的原理进行保护的电路,用于专用驱动器EXB841。EXB841内部电路能很好地完成降栅及软关断,并具有内部延迟功能,以消除干扰产生的误动作。含有IGBT过流信息的Vce不直接送至EXB841的集电极电压监视脚6,而是经快速恢复二极管VD1,通过比较器IC1输出接至EXB841的脚6,其目的是为了消除VD1正向压降随电流不同而异,采用阈值比较器,提高电流检测的准确性。如果发生过流,驱动器EXB841的低速切断电路慢速关断IGBT,以避免集电极电流尖峰。

随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响

  (2) 利用电流传感器设计过流保护电路

  图2(a)是利用电流传感器进行过流检测的IGBT保护电路,电流传感器(SC)初级(1匝)串接在IGBT的集电极电路中,次级感应的过流信号经整流后送至比较器IC1的同相输入端,与反相端的基准电压进行比较,IC1的输出送至具有正反馈的比较器IC2,其输出接至PWM控制器UC3525的输出控制脚10。不过流时,VAVref,VB为高电平,C3充电使VC》Vref,IC2输出高电平(大于1.4V),关闭PWM控制电路。因无驱动信号,IGBT关闭,而电源停止工作,电流传感器无电流流过,使VA参数,使PWM驱动信号关闭时间t2》》t1,可保证电源进入睡眠状态。正反馈电阻R7保证IC2只有高、低电平两种状态,D5,R1,C3充放电电路,保证IC2输出不致在高、低电平之间频繁变化,即IGBT不致频繁开通、关断而损坏。

随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响

  (3) 综合过流保护电路

  图3是利用IGBT(V1)过流集电极电压检测和电流传感器检测的综合保护电路,电路工作原理是:负载短路(或IGBT因其它故障过流)时,V1的Vce增大,V3门极驱动电流经R2,R3分压器使V3导通,IGBT栅极电压由VD3所限制而降压,限制IGBT峰值电流幅度,同时经R5C3延迟使V2导通,送去软关断信号。另一方面,在短路时经电流传感器检测短路电流,经比较器IC1输出的高电平使V3导通进行降栅压,V2导通进行软关断。

随着电力电子器件技术的发展,大功率器件在轨道交通、直流输电、风力发电等领域的市场迅猛发展,其中以IGBT器件表现尤为突出,在具体的应用工况中,每一个IGBT模块都需要一个专门的驱动器,IGBT驱动器对IGBT的运行性能有着重大影响

  此外,还可以应用检测IGBT集电极电压的过流保护原理,采用软降栅压、软关断及降低工作频率保护技术的短路保护电路]。开关电源保护功能虽属电源装置电气性能要求的附加功能,但在恶劣环境及意外事故条件下,保护电路是否完善并按预定设置工作,对电源装置的安全性和可靠性至关重要。验收技术指标时,应对保护功能进行验证。

  开关电源的保护方案和电路结构具有多样性,但对具体电源装置而言,应选择合理的保护方案和电路结构,以使得在故障条件下真正有效地实现保护。

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

( 发表人:易水寒 )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!