您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子元器件>电池>锂电池>

官能团的表征 - 超全面锂电材料常用表征技术及经典应用举例

2016年12月15日 13:54 材料人 作者:佚名 用户评论(0

  4、官能团的表征

  官能团又称官能基、功能团,是决定有机化合物化学性质的原子和原子团。常见官能团有烃基、含卤素取代基、含氧官能基、含氮官能基以及含磷、硫官能团5 种。

  (1)拉曼光谱(RS)

  由印度物理学家拉曼在单色光照射液体苯后散射出的与入射光频率不同谱线的实验中发现的,从拉曼光谱可以得到分子振动和转动的信息。拉曼光谱适用于对称结构极性较小的分子,例如对于全对称振动模式的分子,在激发光子的作用下,会发生分子极化,产生拉曼活性,而且活性很强。

  在锂离子电池电极材料表征时,由于拆卸和转移过程难免人为或气氛原因对电极材料造成干扰,因此原位技术与拉曼光谱一起用在了电极材料的表征上。拉曼光谱对于材料结构对称性、配位与氧化态非常敏感,可用于测量过渡金属氧化物。

  对于拉曼光谱的灵敏度不够的情况,可以使用一些Au和Ag等金属在样品表面进行处理,由于在这些特殊金属的导体表面或溶胶内靠近样品表面电磁场的增强导致吸附分子的拉曼光谱信号增强,称之为表面增强拉曼散射(SERS)。

  Peng等利用SERS的手段证实了锂空电池充放电过程中确实存在着中间产物LiO2,而在充电过程中LiO2并没有观测到,说明了锂空电池的放电过程是一个两步反应过程,以LiO2作为中间产物,而充电过程是不对称的一步反应,Li2O2的直接分解,由于Li2O2导电性差分解困难,这也是导致充电极化大于放电极化的原因。

  (2)傅里叶变换红外光谱(FT-IS)

  红外光谱使用的波段与拉曼类似,不少拉曼活性较弱的分子可以使用红外光谱进行表征,红外光谱也可作为拉曼光谱的补充,红外光谱也称作分子振动光谱,属于分子吸收光谱。

  依照红外光区波长的不同可以将红外光区分为三个区域:① 近红外区,即泛频区,指的是波数在4000 cm-1以上的区域,主要测量O—H、C—H、N—H键的倍频吸收;② 中红外区,即基本振动区,波数范围在400~4000 cm-1,也是研究和应用最多的区域,主要测量分子振动和伴随振动;③ 远红外区,即分子振动区,指的是波数在400 cm-1以下的区域,测量的主要是分子的转动信息。

  由于水是极性很强的分子,它的红外吸收非常强烈,因此水溶液不能直接测量红外光谱,通常红外光谱的样品需要研磨制成KBr的压片。

  通常红外光谱的数据需要进行傅里叶变换处理,因此红外光谱仪和傅里叶变化处理器联合使用,称为傅里叶红外光谱(FITR)。在锂离子电池电解液的研究中,使用红外光谱手段的工作较多。

  Mozhzhukhina等利用红外光谱对锂空电池电解液常用的溶剂二甲基亚砜DMSO的稳定性进行了研究,发现DMSO在锂空电池中无法稳定主要是由于超氧根离子(O2-)的进攻,而在红外光谱中观测到SO2的信号存在,这个反应难以避免,即使在低至3.5 V的电位下,DMSO也无法稳定。

  (3)深紫外光谱(UV)

  主要用于溶液中特征官能团的分析

  5、材料离子运输的现象

  (1)中子衍射(ND)

  结合最大熵模拟分析方法可以得到电极材料中的Li+扩散通道的信息

  (2)核磁共振(NMR)

  测得一些元素的核磁共振谱随热处理温度的变化,测得Li+的自扩散系数

  Gobet等利用脉冲梯度场的NMR技术表征了β-Li3PS4固体中1H、6.7Li、31P核磁共振谱随热处理温度的变化,测得了Li+的自扩散系数,与之前报道的Li+电导率数量级一致。

  (3)原子力显微镜系列技术(AFM)

  利用针尖原子与样品表面原子间的范德华作用力来反馈样品表面形貌信息。AFM具备高的空间分辨率(约0.1)和时间分辨能力,由于它不探测能量,并不具有能量分辨能力,与1996年首次应用于锂离子电池研究中,

  Zhu等采用固态电解质通过磁控溅射的方法制备了一个全电池,再通过in situ AFM的手段检测Ti02负极表面形貌随所加载的三角波形电压的变化。

  6、材料微观力学性质

  电池材料一般为多晶,颗粒内部存在应力。在充放电过程中锂的嵌入脱出会发生晶格膨胀收缩,导致局部应力发生变化,进一步会引起颗粒以及电极的体积变化、应力释放、出现晶格堆垛变化、颗粒、电极层产生裂纹。

  (1)原子力显微镜系列技术(AFM)与纳米压印技术以及在TEM中与纳米探针、STM探针联合测试

  观察形貌特征,在采用固态电池时可以进行原位力学特性、应力的测量

  Jeong等采用AFM原位观察了HOPG基面在循环伏安过程中形成的表面膜的厚度

  (2)SPM探针

  用途:研究SEI膜的力学特性

  在接触模式下,以恒力将探针扎入膜,便可得到该处扎入深度随力的响应曲线,进而可以得到杨氏模量等信息。

  7、材料表面功函数

  (1)开尔文探针力显微镜(KPFM)

  通过探测表面电势对探针的作用力,来得到样品表面的电势分布

  agpure等利用开尔文探针显微镜技术(KPFM)测量了老化后的锂离子电池表面电势,老化后的电池具有更低的表面电势,这可以归因于颗粒尺寸、表面层的相变以及新沉积物的物理化学性质的影响。

  (2)电子全息

  测到全固态锂离子电池充放电过程中电势的变化情况,得到不同体系下电势在界面的分布

  Yamamoto小组通过电子全息的方法直接观测到了全固态锂离子电池充放电过程中电势的变化情况,成功地得到了不同体系下电势在界面的分布,验证了电势主要分布在正极/电解质界面的结论。

  (3)光发射电子显微镜(PEEM)

  用于得到表面电势的分布

  除了上述表征手段,在实际的实验中,还会用到一些其他的表征技术,比如:(1)角分辨光电子能谱(ARPES),用途:直接测量材料能带结构;(2)DFT计算,用途:获得材料的电子结构;(3)电子淹没技术(PAT),用途:测量缺陷结构和电子结构;(4)卢瑟福背散射(RBS),用途:可以测量薄膜组成;(5)共振非弹性X射线散射(RIXS),用途:研究原子问磁性相互作用;(6)俄歇电子成像技术(AES),用途:直接探测颗粒、电极表面锂元素空间分布,通过Ar离子剥蚀还可进行元素深度分析等。当然,在研究锂电时,电化学表征也是十分重要的。

非常好我支持^.^

(1) 100%

不好我反对

(0) 0%

( 发表人:方泓翔 )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!