您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子元器件>二极管>

LED发光二极管如何分类 - 电子设计基础关键元器件篇(二):二极管

2012年03月05日 10:59 本站整理 作者:秩名 用户评论(0

  4 LED发光二极管如何分类

  1.按发光管发光颜色分

  按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。另外,有的发光二极管中包含二种或三种颜色的芯片。根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管和达于做指示灯用。

  2.按发光管出光面特征分

  按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。

  圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。国外通常把φ3mm的?发光二极管记作T-1;把 φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。由半值角大小可以估计圆形发光强度角分布情况。从发光强度角分布图来分有三类:

  (1)高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为5°~20°或更小,具有很高的指向性,可作局部照明光源用,或与光检出器联用以组成自动检测系统。

  (2)标准型。通常作指示灯用,其半值角为20°~45°。

  (3)散射型。这是视角较大的指示灯,半值角为45°~90°或更大,散射剂的量较大。

  五、二极管的主要参数

  用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数:

  1.反向饱和漏电流IR

  指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料和温度有关。在常温下,硅管的IR为纳安(10-9A)级,锗管的IR为微安(10-6A)级。

  2.额定整流电流IF

  指二极管长期运行时,根据允许温升折算出来的平均电流值。目前大功率整流二极管的IF值可达1000A。

  3. 最大平均整流电流IO

  在半波整流电路中,流过负载电阻的平均整流电流的最大值。这是设计时非常重要的值。

  4. 最大浪涌电流IFSM

  允许流过的过量的正向电流。它不是正常电流,而是瞬间电流,这个值相当大。

  5.最大反向峰值电压VRM

  即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。因给整流器加的是交流电压,它的最大值是规定的重要因子。最大反向峰值电压VRM指为避免击穿所能加的最大反向电压。目前最高的VRM值可达几千伏。

  6. 最大直流反向电压VR

  上述最大反向峰值电压是反复加上的峰值电压,VR是连续加直流电压时的值。用于直流电路,最大直流反向电压对于确定允许值和上限值是很重要的。

  7.最高工作频率fM

  由于PN结的结电容存在,当工作频率超过某一值时,它的单向导电性将变差。点接触式二极管的fM值较高,在100MHz以上;整流二极管的fM较低,一般不高于几千赫。

  8.反向恢复时间Trr

  当工作电压从正向电压变成反向电压时,二极管工作的理想情况是电流能瞬时截止。实际上,一般要延迟一点点时间。决定电流截止延时的量,就是反向恢复时间。虽然它直接影响二极管的开关速度,但不一定说这个值小就好。也即当二极管由导通突然反向时,反向电流由很大衰减到接近IR时所需要的时间。大功率开关管工作在高频开关状态时,此项指标至为重要。

  9. 最大功率P

  二极管中有电流流过,就会吸热,而使自身温度升高。最大功率P为功率的最大值。具体讲就是加在二极管两端的电压乘以流过的电流。这个极限参数对稳压二极管,可变电阻二极管显得特别重要。

  编辑本段半导体二极管参数符号及其意义

  CT---势垒电容  Cj---结(极间)电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容  Cjv---偏压结电容  Co---零偏压电容  Cjo---零偏压结电容  Cjo/Cjn---结电容变化  Cs---管壳电容或封装电容  Ct---总电容  CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比  CTC---电容温度系数  Cvn---标称电容  IF---正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流  IF(AV)---正向平均电流  IFM(IM)---正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二极管极限电流。  IH---恒定电流、维持电流。  Ii--- 发光二极管起辉电流  IFRM---正向重复峰值电流  IFSM---正向不重复峰值电流(浪涌电流)  Io---整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流  IF(ov)---正向过载电流  IL---光电流或稳流二极管极限电流  ID---暗电流  IB2---单结晶体管中的基极调制电流  IEM---发射极峰值电流  IEB10---双基极单结晶体管中发射极与第一基极间反向电流  IEB20---双基极单结晶体管中发射极向电流  ICM---最大输出平均电流  IFMP---正向脉冲电流  IP---峰点电流  IV---谷点电流  IGT---晶闸管控制极触发电流  IGD---晶闸管控制极不触发电流  IGFM---控制极正向峰值电流  IR(AV)---反向平均电流  IR(In)---反向直流电流(反向漏电流)。在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。  IRM---反向峰值电流  IRR---晶闸管反向重复平均电流  IDR---晶闸管断态平均重复电流  IRRM---反向重复峰值电流  IRSM---反向不重复峰值电流(反向浪涌电流)  Irp---反向恢复电流  Iz---稳定电压电流(反向测试电流)。测试反向电参数时,给定的反向电流  Izk---稳压管膝点电流  IOM---最大正向(整流)电流。在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流  IZSM---稳压二极管浪涌电流  IZM---最大稳压电流。在最大耗散功率下稳压二极管允许通过的电流  iF---正向总瞬时电流  iR---反向总瞬时电流  ir---反向恢复电流  Iop---工作电流  Is---稳流二极管稳定电流  f---频率  n---电容变化指数;电容比  Q---优值(品质因素)  δvz---稳压管电压漂移  di/dt---通态电流临界上升率  dv/dt---通态电压临界上升率  PB---承受脉冲烧毁功率  PFT(AV)---正向导通平均耗散功率  PFTM---正向峰值耗散功率  PFT---正向导通总瞬时耗散功率  Pd---耗散功率  PG---门极平均功率  PGM---门极峰值功率  PC---控制极平均功率或集电极耗散功率  Pi---输入功率  PK---最大开关功率  PM---额定功率。硅二极管结温不高于150度所能承受的最大功率  PMP---最大漏过脉冲功率  PMS---最大承受脉冲功率  Po---输出功率  PR---反向浪涌功率  Ptot---总耗散功率  Pomax---最大输出功率  Psc---连续输出功率  PSM---不重复浪涌功率  PZM---最大耗散功率。在给定使用条件下,稳压二极管允许承受的最大功率  RF(r)---正向微分电阻。在正向导通时,电流随电压指数的增加,呈现明显的非线性特性。在某一正向电压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻  RBB---双基极晶体管的基极间电阻  RE---射频电阻  RL---负载电阻  Rs(rs)----串联电阻  Rth----热阻  R(th)ja----结到环境的热阻  Rz(ru)---动态电阻  R(th)jc---结到壳的热阻  r δ---衰减电阻  r(th)---瞬态电阻  Ta---环境温度  Tc---壳温  td---延迟时间  tf---下降时间  tfr---正向恢复时间  tg---电路换向关断时间  tgt---门极控制极开通时间  Tj---结温  Tjm---最高结温  ton---开通时间  toff---关断时间  tr---上升时间  trr---反向恢复时间  ts---存储时间  tstg---温度补偿二极管的贮成温度  a---温度系数  λp---发光峰值波长  △ λ---光谱半宽度  η---单结晶体管分压比或效率  VB---反向峰值击穿电压  Vc---整流输入电压  VB2B1---基极间电压  VBE10---发射极与第一基极反向电压  VEB---饱和压降  VFM---最大正向压降(正向峰值电压)  VF---正向压降(正向直流电压)  △VF---正向压降差  VDRM---断态重复峰值电压  VGT---门极触发电压  VGD---门极不触发电压  VGFM---门极正向峰值电压  VGRM---门极反向峰值电压  VF(AV)---正向平均电压  Vo---交流输入电压  VOM---最大输出平均电压  Vop---工作电压  Vn---中心电压  Vp---峰点电压  VR---反向工作电压(反向直流电压)  VRM---反向峰值电压(最高测试电压)  V(BR)---击穿电压  Vth---阀电压(门限电压、死区电压)  VRRM---反向重复峰值电压(反向浪涌电压)  VRWM---反向工作峰值电压  V v---谷点电压  Vz---稳定电压  △Vz---稳压范围电压增量  Vs---通向电压(信号电压)或稳流管稳定电流电压  av---电压温度系数  Vk---膝点电压(稳流二极管)  VL ---极限电压

  二极管和半导体的关系

  二极管的正负二个端子。正端A称为阳极,负端K 称为阴极。电流只能从阳极向阴极方向移动。一些初学者容易产生这样一种错误认识:“半导体的一‘半’是一半的‘半’;而二极管也是只有一‘半’电流流动(这是错误的),所有二极管就是半导体 ”。其实二极管与半导体是完全不同的东西。我们只能说二极管是由半导体组成的器件。半导体无论那个方向都能流动电流。

  六、半导体二极管的极性判别及选用

  1 半导体二极管的极性判别

  一般情况下,二极管有色点的一端为正极,如2AP1~2AP7,2AP11~2AP17等。如果是透明玻璃壳二极管,可直接看出极性,即内部连触丝的一头是正极,连半导体片的一头是负极。塑封二极管有圆环标志的是负极,如IN4000系列。

  无标记的二极管,则可用万用表电阻挡来判别正、负极,万用表电阻挡示意图见图T304。

  根据二极管正向电阻小,反向电阻大的特点,将万用表拨到电阻挡(一般用R×100或R×1k挡。不要用R×1或R×10k挡,因为R×1挡使用的电流太大,容易烧坏管子,而R×10k挡使用的电压太高,可能击穿管子)。用表笔分别与二极管的两极相接,测出两个阻值。在所测得阻值较小的一次,与黑表笔相接的一端为二极管的正极。同理,在所测得较大阻值的一次,与黑表笔相接的一端为二极管的负极。如果测得的正、反向电阻均很小,说明管子内部短路;若正、反向电阻均很大,则说明管子内部开路。在这两种情况下,管子就不能使用了。

  万用表欧姆档示意图开关二极管

  七、测试二极管的好坏

  (一)普通二极管的检测 (包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。

  1.极性的判别 将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。

  2.单负导电性能的检测及好坏的判断 通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。

  若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。

  3.反向击穿电压的检测 二极管反向击穿电压(耐压值)可以用晶体管直流参数测试表测量。其方法是:测量二极管时,应将测试表的“NPN/PNP”选择键设置为NPN状态,再将被测二极管的正极接测试表的“C”插孔内,负极插入测试表的“e”插孔,然后按下“V(BR)”键,测试表即可指示出二极管的反向击穿电压值。

  也可用兆欧表和万用表来测量二极管的反向击穿电压、测量时被测二极管的负极与兆欧表的正极相接,将二极管的正极与兆欧表的负极相连,同时用万用表(置于合适的直流电压档)监测二极管两端的电压。如图4-71所示,摇动兆欧表手柄(应由慢逐渐加快),待二极管两端电压稳定而不再上升时,此电压值即是二极管的反向击穿电压。

  

  (二)稳压二极管的检测

  1.正、负电极的判别 从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。塑封稳压二极管管体上印有彩色标记的一端为负极,另一端为正极。对标志不清楚的稳压二极管,也可以用万用表判别其极性,测量的方法与普通二极管相同,即用万用表R×1k档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。

  若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。

  2.稳压值的测量 用0~30V连续可调直流电源,对于13V以下的稳压二极管,可将稳压电源的输出电压调至15V,将电源正极串接1只1.5kΩ限流电阻后与被测稳压二极管的负极相连接,电源负极与稳压二极管的正极相接,再用万用表测量稳压二极管两端的电压值,所测的读数即为稳压二极管的稳压值。若稳压二极管的稳压值高于15V,则应将稳压电源调至20V以上。

  也可用低于1000V的兆欧表为稳压二极管提供测试电源。其方法是:将兆欧表正端与稳压二极管的负极相接,兆欧表的负端与稳压二极管的正极相接后,按规定匀速摇动兆欧表手柄,同时用万用表监测稳压二极管两端电压值(万用表的电压档应视稳定电压值的大小而定),待万用表的指示电压指示稳定时,此电压值便是稳压二极管的稳定电压值。

  若测量稳压二极管的稳定电压值忽高忽低,则说明该二极管的性不稳定。

  图4-72是稳压二极管稳压值的测量方法。

  

  (三)双向触发二极管的检测

  1.正、反向电阻值的测量 用万用表R×1k或R×10k档,测量双向触发二极管正、反向电阻值。正常时其正、反向电阻值均应为无穷大。若测得正、反向电阻值均很小或为0,则说明该二极管已击穿损坏。

  2.测量转折电压 测量双向触发二极管的转折电压有三种方法。

  第一种方法是:将兆欧表的正极(E)和负极(L)分别接双向触发二极管的两端,用兆欧表提供击穿电压,同时用万用表的直流电压档测量出电压值,将双向触发二极管的两极对调后再测量一次。比较一下两次测量的电压值的偏差(一般为3~6V)。此偏差值越小,说明此二极管的性能越好。

  第二种方法是:先用万用表测出市电电压U,然后将被测双向触发二极管串入万用表的交流电压测量回路后,接入市电电压,读出电压值U1,再将双向触发二极管的两极对调连接后并读出电压值U2。

  若U1与U2的电压值相同,但与U的电压值不同,则说明该双向触发二极管的导通性能对称性良好。若U1与U2的电压值相差较大时,则说明该双向触发二极管的导通性不对称。若U1、U2电压值均与市电U相同时,则说明该双向触发二极管内部已短路损坏。若U1、U2的电压值均为0V,则说明该双向触发二极管内部已开路损坏。

  第三种方法是:用0~50V连续可调直流电源,将电源的正极串接1只20kΩ电阻器后与双向触发二极管的一端相接,将电源的负极串接万用表电流档(将其置于1mA档)后与双向触发二极管的另一端相接。逐渐增加电源电压,当电流表指针有较明显摆动时(几十微安以上),则说明此双向触发二极管已导通,此时电源的电压值即是双向触发二极管的转折电压。

  图4-73是双向触发二极管转折电压的检测方法。

  

非常好我支持^.^

(83) 37.1%

不好我反对

(141) 62.9%

( 发表人:电子大兵 )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!