4、亮度控制D/T转换技术
LED电子显示屏是由许多相互独立的像素点(发光元)排列而成,由于像素点的分离性,决定了其发光的控制和驱动只能以数字方式进行。这些像素点的发光状态由控制器同步地控制,独立驱动。视频真彩色显示意味着要对每一个像素点的亮度分别进行控制,并且要在规定的扫描时间内同步地完成。大屏幕是以数以万计的像素点组成的,这使得系统的复杂性较两值显示大屏幕而言大为增加,并对总体的数据传输速度提出了更高的要求。给每一像素点设置一个常规D/A显然是不现实的,必须寻找一种能最大限度降低系统复杂性且性能尽可能高的解决方案。
由视觉原理知道,人对像素点的平均亮度感觉可取决于它的亮/灭占空比。也就是说,只要对像素点亮/灭占空比进行调节,就能实现对亮度的控制。对LED电子显示屏而言,这意味着只要将代表像素点亮度的数字转换为像素点发光的时间(D/T转换),即实现了亮度的D/A转换。
设屏幕数据刷新的周期为,控制任意像素点亮度的数据为n位二进制数D=bi2i(其中bi=0或1),Ton为相应于D的发光时间,则像素点亮/灭的占空比为:d=Ton/Ts=D=bi2i。该表达式可用可预置减法计数器实现,但每一像素点配一计数器将使得显示电路异常复杂。上式改写为:Ton=Tsbi2i,这意味着可将Ton分成几个时间段,由于当足够小时,几个分离时间段合成的Ton与总长度相同的连续的Ton其视觉效果是相同的。于是,一般地有,对于n位二进制数据D=bi2i,将分Ts为n段,并选取适当时间分割函数f(i),使得第i段Ti=Tsf(i),其中0即为此像素点的亮/灭占空比。由于函数f(i)对所有像素点而言可以是共同的,因而上式表明,只要用f(i)统一控制各个像素点,就能实现全屏幕所有像素点相互独立而又同步的D/T转换。对于单个像素点来说用图1的电路可实现上式。图中SFR为8位移位寄存器,图为时间分割函数f(i)的波形。
大屏幕显示驱动电路通常采用“串行移位+锁存+驱动”的结构,以期尽量减少数据传送线。要全屏幕同时实现上式,只要将所有ST信号统一由f(i)控制即可。当然这样做的前提是要求移位寄存器中存放的是各个像素点控制数据中的同权位,而这可通过预先的数据处理做到。
5、数据重构与存储技术
存储器有两种组织方式:①组合像素法(PackedPixelMethod):即画面上每个像素的所有位均集中存放在单个存储体中;②位平面法(BitPlaneMethod):即像素的每一位各自存放在不同的存储体中。由于使用了多个存储体,它们可以一次同时读出更多的像素信息。从两种存储结构来分析,利用位平面结构有利于提高LED屏的显示效果。
整个LED显示屏显示控制电路结构框图如图3所示。其中,数据重构电路完成RGB数据的转换,将不同像素的同权位组合在一起,然后存放在相邻的单元中,从而以位的形式完成整个数据的重新组合。
数据重构电路主要由四大部分组成:8位数据并行传送电路;8位并-串转换电路;8位数据锁存电路;8位加1计数器。R/G/B各8位数据由经同步处理后的像素点频打入并行锁存器,8位加1计数器输出进位脉冲LD,将8位数据同时锁存到8位并-串转换电路,由时钟控制电路完成并-串转换电路时钟的控制。数据经过重构后,一个存储体中不再是一个像素值,而是不同像素值的同权位。将所有的同权位存放在一起,从而构成以位为单位的位平面存储结构。在读出时必须按相反的规则取出各像素的相邻权值。
读写地址发生器必须满足严格的时序。对同一存储芯片来说,可将其分为N片(一个像素值用N位表示),每片表示一个位平面,像素经过转换向同一存储器写入时,首先写0位,再写1位,最后写N位。对于8Col×Row点阵的显示屏,每个位平面存有8Col×Row位。存储器内部组织取决于驱动屏体上像素管的逻辑连线关系。根据存储器组织,读地址发生器由列驱动行,再由行驱动位;写地址发生器则采用由位驱动列、列驱动行的方式,从而可以保证读写同步性,正确地同步显示原始图像信息。
6、逻辑电路设计中的ISP技术
在早期的LED电子显示屏显示控制电路中,大量采用的是常规数字电路系统设计,用数字电路组合出复杂控制逻辑。在常规数字电路系统设计中,当电路设计完成后,须先制作电路板,然后安装元件,调试。如果电路板的逻辑功能不符合要求就必须重新设计制作电路板,再重新调试,直到实现逻辑功能为止。很显然,这种设计方法的设计周期长,成本高,且成品可靠性差,维修麻烦。利用普通可编程的逻辑器件,虽可减少印刷电路板的设计与制作,但在修改该逻辑时仍旧不能避免器件的反复插拔。
在系统可编程技术(In-SystemProgrammable,缩写ISP),是指在用户自己设计的目标系统中或电路板上为重构逻辑器件编程或反复改写的能力。常规PLD在使用中通常是先编程后装配,而采用ISP技术的PLD则是先装配后编程,成为产品之后还可以反复编程。在系统可编程技术的出现,从实践上实现了逻辑设计师们多年来梦寐以求的“硬件设计与修改软件化”的愿望,使得数字系统面貌焕然一新。采用ISP技术后,硬件设计变得像软件一样易于修改,硬件的功能可以随时加以修改或按预定的程序改变组态。这不仅扩展了器件的用途,缩短了系统调试周期,而且根除了对器件单独编程的环节,省却了器件编程设备,简化了目标设备的现场维护和升级工作。ISP技术还有一个特点是采用系统设计软件进行逻辑输入时,输入与所选器件无关。因此,在输入之前可选择任何一种器件,甚至可以选择一种“虚拟器件”(VirtualDevice)。在输入完后,再根据仿真和适配的结果选择器件。
ISPLSI器件是美国LATTICE公司于1992年推出的新一代高密度可编程逻辑器件,容量可达25000门,具有现场可编程门阵列(FPGA)的容量和灵活性。它采用E2CMOS工艺,时钟频率可以高达180MHz,传输延时为5ns,低功耗,电擦除,编程内容20年不丢失,100%参数测试,可以加密。器件内部有抗“锁定”电路,以防止出现CMOS器件中可能产生的有害的锁定效应。
其它有关问题
LED电子显示屏一般主要由显示单元、驱动单元、控制单元、数传通信单元、视频采集单元组成。在显示单元中,三基色LED管芯为核心器件,对于高质量的LED电子显示屏必须选用高质量的LED管芯,对此应严格挑选波长及发光强度一致性好的管子。从LED管芯质量上看,日亚公司(日本)、丰田公司(日本)、光磊公司(***)、HP公司的产品质量上佳。在驱动单元中应选用低功耗、长寿命、工作范围宽、驱动电流大的功率器件,美国TI公司生产的功率器件具有较大的产品优势。在控制和通信单元中,主要为逻辑和时序控制。目前在逻辑电路设计上最先进的技术为ISP技术,美国LATTICE公司的ISP产品具有较大的产品优势。在视频采集单元中,不仅要考虑高频信息处理的噪音、畸变问题,还要考虑VGA信号的采样精度及各种同步信号的同步性能,这方面国内北京银河电脑公司的LED视频卡质量上佳。
检验LED电子显示屏的性能,主要应考察以下几项指标:
显示分辨率(像素点/平方米)
电子屏的可视距离及视角
亮度及可调性、色彩及对比度、一致性及稳定性
配光纯正性,RGB非线性校正(γ校正)
灰度:256级
帧频:>60帧/秒
亮度控制D/T转换技术 - LED电子显示屏真彩显示的几种关键技术分享
2011年05月23日 17:11 本站整理 作者:秩名 用户评论(0)
- 第 1 页:LED电子显示屏真彩显示的几种关键技术分享
- 第 2 页:亮度控制D/T转换技术
本文导航
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%
相关阅读:
- [电子说] AEC-Q102特定组件的测试 2024-12-05
- [电子说] 三段低THD恒功率LED驱动器支持次谐波功能SOP8封装 2024-12-05
- [电子说] 揭秘超高功率密度LED器件中的星技术 2024-12-05
- [电子说] 深妙科技 室内外LED电源、LED屏多媒体播放器和二合一视频处理器维修方法 2024-12-05
- [电子说] 点阵数显驱动芯片/数显LED屏驱动VK1640B SSOP24数显驱动器原厂技术支持 2024-12-04
- [电子说] 鸿利智汇旗下佛达信号亮相2024上海法兰克福汽配展 2024-12-04
- [电子说] LED光源抗硫化实验 2024-12-04
- [电子说] 从显示到半导体封装,JDI开启转型新篇章 2024-12-04
( 发表人:春风 )