您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子元器件>发光二极管>

电荷泵驱动器 - 白光LED驱动分析与应用

2011年11月10日 15:04 现代电子技术 作者:刘志强,卿启新, 用户评论(0
1.2 电荷泵驱动器

  最早的理想电荷泵模型是Dickson J在1976年提出的,如图5所示,其基本思想就是通过电容对电荷的积累效应而产生高压。后来Witte-rs J,Toru Tranzawa等人对Dickson J的电荷泵模型进行改进,提出了比较精确的理论模型,并通过实验加以证实。

  

 

 

  现代电荷泵主要由开关阵列、震荡电路、逻辑电路和比较器来实现DC—DC的转换,驱动模式也由以前的单模式转变成自适应多模式,主要的形式有单模式(如2X模式)、双模式(如1X/2X模式)和多模式(如1X/1.5X/2X模式)等,下面结合双模式1X/2X电荷泵分析电荷泵的工作原理。

  如图6所示,当电荷泵工作在1X模式下时,振荡器不工作,S1和S4直接导通,此时,Vin=Vout;当电荷泵工作在2X模式下时,振荡器输出占空比为50%的方波,使S1,S3和S2,S4轮流导通。当时钟信号为高电平时,S1和S3导通,S2和S4截止,Vin与C1连通,对C1进行充电,使Vc =Vin;当时钟信号为低电平时,S1和S3断开,S2和S4导通,Vin通过C1串联对外供电,所以有稳态时,Vout=Vin+Vc=2Vin。

  

 

 

  电荷泵驱动电路,不仅能有效进行升压降压输出,而且还能非常简便地进行负压输出,这是电荷泵驱动器相对其他两种驱动器的一大优势。

  如图7所示,它的基本原理与Dickson电荷泵是一致的,但是利用电容两端电压差不会跳变的特性,当电路保持充放电状态时,电容两端电压差保持恒定。在这种情况下将原来的高电位端接地,从而可得到负电压输出。

  

 

 

  电荷泵驱动电路的一个最重要指标是转换效率。电荷泵的转换效率:

  

f.JPG

 

  式中:Pin为输入总功率;Lout为负载LED上流过的总电流;VLED为LED的正向导通压降;M为电荷泵的升压倍数;Iq为电荷泵功率管的驱动电流和其他模块的静态电流。由上式可以看出,电荷泵的升压倍数M越大,电荷泵的转换效率越低,因此,在满足LED驱动电压,即Vout> VLED的条件下,要尽量使电荷泵工作在低升压倍数的模式下。

  1.3 电感式开关稳压驱动器

  电感式开关稳压驱动器简称开关电源(Switching Power Supply),因电源中起调整稳压控制功能的器件始终以开关方式工作而得名。早期的开关电源频率仅为几千赫兹,当频率达到10 kHz左右时,变压器、电感等磁性元件发出很刺耳的噪声,直到20世纪70年代,开关频率突破了人耳听觉极限的20 kHz,噪声问题才得以解决。随着开关频率的不断提升,驱动器的体积减小,效率提高。20世纪80年代,出现了采用准谐振技术的零电压和零电流开关电路,也就是软开关技术。这种电路使开关开通或关断前的电压、电流分别为零,解决了电路中的开关损耗和开关噪声问题,使开关频率可以大幅度提高,从而使开关电源进一步向体积小、重量轻、效率高、功率密度大的方向发展。

  电感式开关稳压驱动器的核心是电子开关电路,根据负载对电源提出的输出稳压或稳流特性的要求,利用反馈控制电路,采用占空比控制方法,对开关电路进行控制。在开关管闭合的时候,将电源的能量储存在电感中,在开关管关断的时候,电感中的能量流入电容,这样就实现了能量的传输。

  电感式开关稳压驱动器有通常两种控制方式:一是保持开关工作周期不变,控制开关导通时间的脉冲宽度调制方式(PWM),该方式是在输入电压或负载变化时,控制电路通过输出电压或电流与基准电压的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得电感式开关稳压驱动器的输出电压或电流保持稳定;另一种是保持导通时间不变,改变开关工作周期的脉冲频率调制方式(PFM),基本工作原理就是在输入电压或负载变化的情况下,控制电路通过输出电压与基准电压的差值进行闭环反馈,在保持开关开启时间不变的情况下,控制开关周期的长短,即控制开关频率,来调整开关占空比,以达到稳定输出电压或电流的目的。由于PWM方式电路简单,且输入/输出范围较PFM方式更广泛(PFM通常用于轻负载、低电压、低电流情况下),所以得到了广泛应用,下面主要介绍两种PWM驱动方式。

  

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

( 发表人:小兰 )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!