在对荧光灯阴极预热技术进行了充分研究的基础上,从理论上突破了对敏感材料应用方面的传统认识,巧妙地利用了敏感材料的固有特性和一般气体放电灯的负阻特性,我们研制成功了既能满足荧光灯灯丝预热要求,又能自动关断的智能元件。
其实施方案是:把具有适当阻值及开关温度TB的PTC延迟型热敏电阻同具有适当的压敏电压U1mA(在此电压下压敏电阻Rz的通流为1mA)和通流量的压敏电阻Rz进行串联复合,使成为智能电阻Ri,用以取代电子镇流器及电子节能灯中的普通热敏电阻PTCR。PTCR的温阻特性已示于图2,氧化锌压敏电阻的伏安特性,如图7所示。从图7可看出,氧化锌压敏电阻是对电压非常敏感的器件,其通流值随所施加的电压值的增大而急剧增大,把PTCR和压敏电阻Rz串联复合成智能电阻Ri,接在电子镇流器的灯丝预热回路中(如图3所示,去掉普通的PTCR,代之以Ri即可),其作用过程如下:当接通电源瞬间,电子镇流器的开路输出电压(一般为1000VP-P左右),使压敏电阻Rz导通。适当选择U1mA,使导通电流等于该灯管的灯丝预热电流)灯丝电流经Ri流过。适当地选择PTCR阻值、体积及开关温度TB,使在0.4s(1s达到此开关温度后,Ri中的PTCR阻值骤增至高阻状态。这样,一方面限制了压敏电阻的通流量,一方面使Ri=Rz+PTCR支路近于开路,这时由L和C1构成的串联谐振回路(见图3)起振,谐振电压U2(见图4)增大到把灯管点亮,灯点亮后呈负阻特性,灯管两端电压下降到灯管正常工作电压,此灯管工作电压一般远低于所选定的压敏电阻的压敏电压U1mA,所以,灯点亮后,Rz自行关断。Ri=Rz+PTCR处于“休闲状态”。
可见,该智能型PTC热敏电阻是利用PTC热敏电阻的延迟特性来完成灯丝预热时间和PTC热敏电阻的限流特性来保护压敏电阻Rz不至于“过荷”而烧坏;又利用压敏电阻Rz的压敏电压U1mA特性和荧光灯管的负阻特性满足预热电流并关断预热回路。这样Rz与PTCR的串联复合体-智能热敏电阻Ri,就能完成荧光灯灯丝预热及"关断”功能。使用智能热敏电阻Ri,不需要改变原电子镇流器的电路参数,只需用相应规格的智能热敏电阻Rpi替换PTCR即可。使用中,接通电源,智能热敏电阻就通过电流对灯丝进行预热,在灯管点亮后,智能热敏电阻近于开路状态,关断了预热回路,自身功耗近于零,相当于一个无触点的自动开关。
在电子镇流器或电子节能灯上使用智能热敏电阻有如下特点和优越性:
(1)完全可以按各种规格的荧光灯预热电流的要求,在0.4s~2s的时间里,使灯丝达到预热要求。如菲利浦照明电子(上海)公司对灯丝的预热效果,是用灯丝的热态与冷态电阻之比描述的。他们测试了智能热敏电阻的预热效果,热态电阻与冷态电阻与之比在4~5之间,完全符合其预热要求。又如上海浦东某独资照明公司在26W电子节能灯上使用智能热敏电阻,各项参数均符合标准要求。
(2)智能热敏电阻在荧光灯管点亮后,功耗几乎为零,与PTCR相比,相应提高光通量(40~80)流明。同时可使电子镇流器或电子节能灯壳体内温度降低,在18W电子节能灯壳内温度降低(3~5)℃,从而降低了晶体管及电解电容器的热损坏率,提高了整灯的可靠性。
(3)智能热敏电阻在灯管点亮后,关断了预热回路的电流,这不仅防止了自身性能的蜕化,也减少了灯丝的热发射,延长了灯管的使用寿命,如威海北洋集团灯管厂在18W电子节能灯上使用智能热敏电阻,通断10万次之后,解剖观察阴极,大部分电子粉颜色为白色,阴极损耗正常,北洋照明电器公司进行实验后认为:在相同条件下,智能热敏电阻与PTCR相比,灯管发黑的程度要轻得多,只有PTCR的一半左右,他们的结论是:采用智能热敏电阻预热启动,可延长灯管寿命。
(4)智能热敏电阻由于其结构上的原因,能充分适应电子镇流器和电子节能灯产生的高频高压的作用条件。经过10000次的模拟开关试验后,智能热敏电阻的预热启动特性基本不变。对于灯管老化、灯阴极失去激活、不易启动的情况,电子镇流器输出呈开路状态,其开路电压一般在10000V(GB标准要求小于1500V),此时,智能热敏电阻仍能承受5s(标准要求镇流器元件能耐异常状态的持续时间为5s)的高频高压,经过200次的异常状态试验,预热启动特性变化不显著。(一般电子镇流器均有异常状态保护电路,当灯管老化、灯不易启动、输出端出现高压、大电流时,保护电路一般会在2s内动作,因此,智能热敏电阻所承受的高频高压时间一般只有2s左右,不会到5s,其安全裕度是足够充分的。
(5)智能热敏电阻自身呈现的电容值很小,对电子镇流器的输出特性没有影响。
总之,节能灯用智能型PTC热敏电阻以其独有的自动通断性能,克服了PTC在荧光灯阴极预热问题上存在的缺点,而且性能价格比也比较优越,使用安全可靠,是电子镇流器和电子节能灯比较理想的预热元件。