热敏电阻测温电路设计方案汇总(三)
本文提供了一种低成本的利用单片机多余I/O口实现的温度检测电路,该电路非常简单,且易于实现,并且适用于几乎所有类型的单片机。其电路如下图所示:
图中:
P1.0、P1.1和P1.2是单片机的3个I/O脚;
RK为100k的精密电阻;
RT为100K-精度为1%的热敏电阻;
R1为100Ω的普通电阻;
C1为0.1μ的瓷介电容。
其工作原理为:
1.先将P1.0、P1.1、P1.2都设为低电平输出,使C1放电至放完。
2.将P1.1、P1.2设置为输入状态,P1.0设为高电平输出,通过RK电阻对C1充电,单片机内部计时器清零并开始计时,检测P1.2口状态,当P1.2口检测为高电平时,即C1上的电压达到单片机高电平输入的门嵌电压时,单片机计时器记录下从开始充电到P1.2口转变为高电平的时间T1。
3.将P1.0、P1.1、P1.2都设为低电平输出,使C1放电至放完。
4.再将P1.0、P1.2设置为输入状态,P1.1设为高电平输出,通过RT电阻对C1充电,单片机内部计时器清零并开始计时,检测P1.2口状态,当P1.2口检测为高电平时,单片机计时器记录下从开始充电到P1.2口转变为高电平的时间T2。
5.从电容的电压公式:
可以得到:T1/RK=T2/RT,即RT=T2×RK/T1
热敏电阻测温电路设计方案汇总(四)
1、原理电路
本测温控温电路由温度检测、显示、设定及控制等部分组成,见图2.2.1。图中D1~D4为单电源四运放器LM324的四个单独的运算放大器。RT1~RTn为PTC感温探头,其用量取决于被测对象的容积。RP1用于对微安表调零,RP2用于调节D2的输出使微安表指满度。S为转换开关。
图2.2.1测温控温电路
由RT检测到的温度信息,输入D1的反馈回路。该信息既作为D2的输入信号,经D2放大后通过微安表显示被测温度;又作为比较器D4的同相输入信号,与D3输出的设定基准信号,构成D4的差模输入电压。当被控对象的实际温度低于由RP3预设的温度时,RT的阻值较小,此时D4同相输入电压的绝对值小于反相输入电压的绝对值,于是D4输出为高电位,从而使晶体管V饱和导通,继电器K得电吸合常开触点JK,负载RL由市电供电,对被控物进行加热。当被控对象的实际温度升到预设值时,D4同相输入电压的绝对值大于反相输入电压的绝对值,D4的输出为低电位,从而导致V截止,K失电释放触点JK至常开,市电停止向RL供电,被控物进入恒温阶段。如此反复运行,达到预设的控温目的。
2、主要元器件选择
本测温控温电路选用PTC热敏电阻为感温元件,该元件在0℃时的电阻值为264Ω,制作成温度传感器探测头,按图2.2.2线化处理后封装于护套内。
图2.2.2线化电路
线化后的PTC热敏电阻感温探头具有良好的线性,其平均灵敏度达16Ω/℃左右。如果采用数模转换网络、与非门电路及数码显示器,替代本电路的微安表显示器,很容易实现远距离多点集中的遥测。继电器的选型取决于负载功率。为便于调节,RP1~RP4选用线性带锁紧机构的微调电位器。
3、安装与调试
调试工作主要是调整指示器的零点和满度指示。先将S接通R0,调节RP1使微安表指零,于此同时,调节RP4使其阻值与RP1相同,以保持D1与D4的对称性。然后将S接通R1,调节RP2使微安表指满度。最后,按RT的标准阻-温曲线,将RP3调到与设定温度相应的阻值,即可投入使用。本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃。