如何减少前端模拟器件的电磁干扰EMI
2012年11月06日 15:35 来源:电子发烧友 作者:灰色天空 我要评论(0)
在医疗设备、汽车仪器仪表和工业控制等科技领域中,当设备设计涉及应变计、传感器接口和电流监控时,通常需要采用精密模拟前端放大器,以便提取并放大非常微弱的真实信号,并抑制共模电压和噪声等无用信号。首先,设计人员将集中精力确保器件级噪声、失调、增益和温度稳定性等精度参数符合应用要求。
然后,设计人员根据上述特性,选择符合总误差预算要求的前端模拟器件。不过,此类应用中存在一个经常被忽视的问题,即外部信号导致的高频干扰,也就是通常所说的“电磁干扰(EMI)”。EMI可以通过多种方式发生,主要受最终应用影响。例如,与直流电机接口的控制板中可能会用到仪表放大器,而电机的电流环路包含电源引线、电刷、换向器和线圈,通常就像天线一样可以发射高频信号,因而可能会干扰仪表放大器输入端的微小电压。
另一个例子是汽车电磁阀控制中的电流检测。电磁阀由车辆电池通过长导线来供电,这些导线就像天线一样。该导线路径中连接着一个串联分流电阻,然后通过电流检测放大器来测量该电阻上的电压。该线路中可能存在高频共模信号,而该放大器的输入端容易受到这类外部信号的影响。一旦受到外部高频干扰影响,就可能导致模拟器件的精度下降,甚至可能无法控制电磁阀电路。这种状态在放大器中的表现就是放大器输出精度超过误差预算和数据手册中的容差,甚至在某些情况下可能会达到限值,从而导致控制环路关断。
EMI是如何造成较大的直流偏差呢?可能是以下一种情形:根据设计,很多仪表放大器可以在最高数十千赫的频率范围内表现出极佳的共模抑制性能。但是,非屏蔽的放大器接触到数十或数百“兆赫”的RF辐射时,就可能会出现问题。此时放大器的输入级可能会出现非对称整流,从而产生直流失调,进一步放大后,会非常明显,再加上放大器的增益,甚至达到其输出或部分外部电路的上限。
关于高频信号如何影响模拟器件的示例
本例将详细介绍一种典型的高端电流检测应用。图1所示为汽车应用环境中用于监控电磁阀或其它感性负载的常见配置。
图1. 高端电流监控
我们采用两个具有类似设计的电流检测放大器配置,研究了高频干扰的影响。这两个器件的功能和引脚排列完全相同;不过,其中一个内置EMI滤波器电路,而另一个则没有。
图2. 电流传感器输出 (无内置EMI滤波器,前向功率 = 12 dBm, 100 mV/分频,3 MHz时直流输出达到峰值)
图2所示为输入在较宽频率范围内变化时电流传感器的直流输出与其理想值的偏差情况。从图中可以看出,在1 MHz至20 MHz的频率范围内,偏差最为显著(>0.1 V),且3 MHz时直流误差达到最大值(1 V),这在放大器0 V至5 V的输出电压范围中占据很大比例。
图3所示为采用另一种引脚兼容电流传感器时相同实验和配置的测试结果,其中电流传感器具有与之前示例相同的电路架构和类似的直流规格,但是内置输入EMI滤波电路。注意,电压范围扩大了20倍。
图3. 电流传感器输出 (内置EMI滤波器,前向功率 = 12 dBm, 5 mV/分频,>100 MHz时直流输出达到峰值)
这种情况下,40 MHz时误差仅为3 mV左右,且峰值误差(大于100 MHz时)小于30 mV,性能提高35倍。这点清楚地表明,内置EMI滤波电路有助于显著提高电流传感器防护性能,使其免受输入端存在的高频信号影响。在实际应用中,尽管并不清楚EMI的严重程度,但是如果使用内置EMI滤波功能的电流传感器,实际上控制环路将会保持在其容差范围内。
这两种器件都在完全相同的条件下进行测试。唯一不同就是AD8208(参见“附录”)在输入引脚和电源引脚上都配有内部低通RF输入滤波器。在芯片上增添这样的部件似乎微不足道,但是由于应用通常由PWM进行控制,这种情况下电流检测放大器必须能够承受最高45 V的连续开关共模电压。因此,要保持精确的高增益和共模抑制性能,输入滤波器必须严格匹配。
本文导航
- 第 1 页:如何减少前端模拟器件的电磁干扰EMI
- 第 2 页:如何保证EMI兼容性
上周热点文章排行榜
上周资料下载排行榜
创新实用技术专题
大家谈:华为能否撬开美国市场?
热评
- LM3S9B96开发板手册及原理图
- NI推出Single-Board RIO嵌入式介面
- STM32F103ZET6红牛电路图
- 高通发布全新设计DragonBoard板
- 3.15投诉:揭开天翼3G手机的“欺骗”
- 小米手机2工程机月底将上市
- protel99se正式汉化版免费下载
- 新款 Apple TV 将在3月8日出货
- matlab 7.0软件下载(免费破解版)
- hi3515海思原版原理图
博文
- 一名大学毕业生的反思(转)
- 白岩松:青春该怎么过?不计后果的过
- 关于学电子的女生那点事
- 我决定记录自己苦涩的生活历程
- 元芳,你怎么看cheer番茄
- 当你累了,准备放弃时,看看这个吧!!!
- 晒一晒“我的电子工程师之路”博文大赛【金奖】
- 模电基础知识经典200问(下)
- 大学那点事儿第二波:文科女生PK理科女生
- 模电基础知识经典200问(上)
帖子
- 【新手帖】旋转电子钟------花了钱在淘宝买的资料分享下 米饭天天见
- 【申精】李想STM32视频教程 智芯STM32开发板全套资料 stm32... mhqyz
- 清华学霸让你汗颜-元芳,此事你怎么看 zhihuizhou
- 【创意:点阵俄罗斯方块游戏板】详细开发过程 libar
- 成功的作品却追不到我心爱的她 hao10086
- 自制微型STC12C5A60S2单片机学习板(有图有程序) yiyi200712new
- LED光立方水滴效果(原理图+HEX) gk320830
- 回首我们人生的第一份收入 xiaoliu241
- “自给自足——DIY自己的51单片机学习板”活动华丽开启 zhihuizhou
- 第七届飞思卡尔智能车大赛智能车技术报告全部合集 北京烤鸭
用户评论
查看全部 条评论
查看全部 条评论>>