近红外谱区(1)是指位于可见谱区与中红外谱区之间的一段电磁波谱,即介于780-2526nm的光区。近红外光谱(Near-infrared Spectroscopy, NIRS)可划分为短波长近红外波段和长波长近红外波段,其波段范围分别为780-1100nm和1100-2526nm。由于频率较高,NIR谱区分子对其吸收主要是分子振动的倍频与合频吸收。NIRS分析技术是通过被分析物质中的含氢基团,如OH、CH、NH、SH、PH等在近红外区域内表现有特征吸收,利用计算机技术及化学计量学方法,对扫描测试样品的光学数据进行一系列的分析处理,最后完成该样品有关成分的定量分析任务。
基于虚拟仪器的近红外整粒小麦成分测量系统主要包括仪器软、硬件和建模软件。仪器软、硬件均采用模块化设计。硬件模块化主要由光路、检测器及信号调理电路和虚拟仪器的数据采集板卡组成;软件模块化主要由信号获取模块、I/O控制模块、数据分析模块、数据保存和显示模块组成。软件平台采用的是图形化的编程语言LabVIEW,建模采用逐步回归分析[6]方法。
1.硬件设计
1.1光路设计
光源部分由14个近红外发光二极管(LED)组成,每个发光二极管对应通过一个波长位于890nm~1050nm之间的近红外窄带干涉滤光片,形成单色的近红外光,近红外光经菲涅尔透镜汇聚到被测样品上,在样品中被散射吸收后,由检测器接收,由于LED的电流决定了它的光强,每支LED都有单独可以调节的恒流电路,以保证光源的稳定。
窄带干涉滤光片的带宽为10nm,所使用的范围为890nm~1050nm。测量的时候,先用各个波长依次照射样本,得到各波长样本的光谱数据,然后通过逐步回归算法挑出对待测成分有显著影响的波长。预测的时候,只需将所挑出波长的吸光度带入模型计算。
本系统采用单一的检测器,将14个波长的窄带滤光片尽可能紧密地排布在圆形的支架上,在通过同样电流的情况下LED在不同波长处的光强不同,因此,将LED发光较弱波长的滤光片(即波长与890nm和940nm相差较大的滤光片)排布在接近圆心的位置,以增强有效光强。
菲涅尔透镜的焦距是20mm,透镜距离支架是40mm,距检测器是20mm。菲涅尔透镜、支架、检测器垂直固定在通过它们中心的一条直线上。样品池厚度为20mm(扣除样品池壁后),样品池透光的两侧为磨砂面,以进一步增强光源的均匀性。样品池在测量范围内对各个波长近红外的透过率近似一致。因此由样品池引起的误差对各个波长来说近似一样。
1.2光源部分电路设计
本系统的光源采用近红外发光二极管,因为其光强小,对样品不会造成损坏,适用于无损检测,且使用寿命达到十年以上。选用波长分别为890nm、940nm,带宽为40nm~50nm。通过调整每支LED的电流,使各个波长通过窄带滤光片以后的光强近似一致。用电路控制LED轮流发光,以分时获得样品在单一波长下的光度值。为保证LED的电流稳定可调,采用恒流源电路。
1.3信号转换电路设计
检测器选择在短波近红外区相应敏感的硅光电池。由于光电池产生的短路电流与光强有良好的线性关系,通过I/V转换,可以得到提供AD转换的电压。由于光源LED的发光角度较小,有较好的单向性,可近似于平行光源。将LED放在菲涅尔透镜的2倍焦距处,检测器放在另一侧1倍焦距处,选用圆形的硅光电池,与滤光片的排布相对。
光电池工作在零偏置即光伏模式,实现精确的线性工作。光电池偏置由运算放大器的虚地维持在零电位上,短路电流被转换成电压。切换增益电阻的开关选择小型5V继电器,由数据采集卡中的I/O口通过一个三极管来控制通断,在测量空白光路的时候选择较小电阻,测量样品时,由于样品的吸收,光强较弱,选择较大电阻,获得较高的增益。
1.4数据采集卡
本系统采用的采集板为微机系统的扩展卡形式,数据采集卡是NI公司的PCI-6040E,用到的还有它的附件CB-68LP,其中CB-68LP是用来将PCI卡上的引脚引到主机外面方便连线的。
用户评论
共 0 条评论