虚拟仪器技术的核心思想是利用计算机的硬/软件资源,使本来需要硬件实现的技术软件化(即虚拟化),以便最大限度地降低系统成本,增强系统的功能与灵活性。基于软件在VI系统中的重要作用,美国NI公司提出了“软件就是仪器”的口号。
2.1程序前面板设计
前面板相当于真实仪器可操作的面板,可以通过操作此面板来完成需要的任务,此前面板包括:开始运行按钮,数字I/O线控制按钮,通道选择,输入采集次数控制量,显示均值和图形显示几个控件。
2.2程序框图设计
在LabVIEW中,程序框图相当于真实仪器内部的器件和连线,这才是软件编程中的灵魂。这部分主要包括信号获取模块,I/O控制模块,信号分析模块,数据获取模块和数据显示模块。本系统扫描了40个已知粗蛋白含量的整粒小麦样品,得到40个光谱图数据,然后用36个样品(4个被剔除)的光谱数据对整理小麦粗蛋白含量进行建模和预测,其中26个作为校准集,用于建立小麦粗蛋白含量与光谱数据之间的校准模型;10个作为预测集,用于检验模型的预测能力。校准集样品的建模模型为: C=4.77-60.24A890+122.17A910-40.63A940+83.83A1020-89.66A1050其中,C为整粒小麦样品粗蛋白的含量,A890,A910,A940,A1020,A1050为对应波长点的吸光度。
根据此关系模型,将扫描到的光谱图中对应波长的吸光度值代入,即可得到某一整粒小麦粗蛋白含量值。其中校准集中预测值与化学值的相关系数为R=0.845,标准差为SEC=0.84。预测集中预测值与化学值的相关系数为R=0.834,标准差为SEP=0.93。
由于建模样品量少以及仪器本身扫描光谱也存在一定的误差,其预测结果与真实化学值之间存在一定偏差,由上面的图可以看出,尽管如此,在精度要求不很精密的场合(如现场测量、快速检测等),已经可以用于对整粒小麦粗蛋白含量进行快速无损检测了。
此系统利用计算机丰富的软件资源,实现了部分硬件的软件化,节省了物质资源,其硬件和软件都采用标准化、模块化和系统化的设计原则,系统性能稳定,调试、扩展和维护方便,人机界面友好,增加了系统的灵活性,能直接实时地对测试数据进行分析和处理。同时将本软件程序打包成可执行程序,可在没有安装LabVIEW软件的电脑上运行,使其不依赖于编程软件来执行,增加了它的适用范围和灵活性。
用户评论
共 0 条评论