1 引言
现代高性能作战飞机普遍采用推力矢量技术,各种高空高速高机动再人弹头的威胁愈显突出,这对传统气动舵控制的导弹系统提出新的要求。现代导弹要求能够选择攻击目标,具有一定的抗干扰能力,实现全天候作战,这使得导弹向高精度、高智能、轻小型化发展;同时,导弹制导控制精度的提高已从制导转向控制。导弹目标范围不断扩大,由反飞机扩大至反巡航导弹、反弹道式导弹等反导任务。高空、高速、大机动已成为当今导弹目标的重要特征,目标的高速大机动特征导致弹一目相对运动加剧,对导弹末端过载提出很高要求;另一方面,目标的高空特征导致导弹系统效率大大降低,可用过载随高度的升高而大幅下降。为了解决这些矛盾,这里采用PID控制方法控制导弹的俯仰、偏航、滚动3个通道。
2 模型的建立
研究导弹制导问题,必须以一定的数学模型为基础。因此,在选择适当的坐标系后,分析推导出导弹的分通道的理想控制运动学模型,并建立舵机模型。
2.1 分通道的理想控制动力学方程
导弹由于存在滚动角,会造成耦合现象,从而增加控制困难,降低控制精度,故应尽量减少耦合,分通道控制。由于导弹的对称性,当滚动角为零或较小时,忽略俯仰与偏航的耦合,即单输入单输出系统。因此可用经典控制理论分通道来研究、分析和设计导弹的控制系统。
纵向运动为导弹纵向动力学方程为:
式中,为切向力,为法向力,为俯仰力矩,m为导弹质量,V为导弹的飞行速度矢量,α为攻角,θ为弹道的倾角,δz为俯仰舵偏角,ωz为导弹绕弹体坐标系oz1轴的角速度,X,Y为弹上的总空气动力沿速度坐标系分解的阻力、升力,Jz为导弹绕弹体坐标系oz1轴的转动惯量,Mz为俯仰力矩。
而侧向运动为航向和横向相互交联耦合,则导弹侧向动力学方程为:
式中,-mVcosθ(dψv/dt)为导弹质心加速度的水平分量,“-”表示向心力为正,所对应的ψv为负,反之亦然。它是由角度正负号定义所决定的,dωx/dt、dωy/dt为导弹转动角加速度矢量在弹体坐标系轴上的分量,Jx、Jy、Jz分别为导弹绕弹体坐标系ox1、oy1、oz1轴的转动惯量,Mx、My分别为滚转力矩和偏航力矩,Y、Z分别为弹上的总空气动力沿速度坐标系分解的升力、侧向力,ωx、ωy、ωz分别为导弹绕弹体坐标系ox1、oy1、oz1轴的角速度。
2.2 舵机模型
2.2.1 电动机模型建立
电动机控制原理图如图1所示。
设减速比i,总转动惯量J,力矩M,输入电压u,电流I,电感L,电阻R,鼓轮的角速度与转角分别为ω和δk,舵偏角δ,电动舵机的力矩特性近似为A,机械特性近似为-B,Mj是铰链力矩,是单位舵偏角产生的铰链力矩,TM=L/R为电动机的电气时间常数,则舵机在有载情况下的传递函数为:
用户评论
共 0 条评论