舵面的铰链力矩对舵机的影响很大,飞行控制系统采用闭环回路设计,消除其影响。舵回路一般采用位置和速度两种反馈补偿方式消除铰链力矩对其的影响。
位置反馈的传递函数为:
当因此,引入较强反馈,电机输出转交正比于输入电压,与反馈量成正比,而与铰链力矩的大小无关。
速度反馈的传递函数为:
根据以上分析,引入较强速度反馈时,则电机输出角速度正比于输入电压,而与飞行状态即铰链力矩的大小无关。
因此,舵机位置控制系统的系统结构如图2所示。
3 分通道PID控制
导弹飞行姿态是通过控制导弹的3个舵面(即升降舵、方向舵、滚动舵)的偏转,改变舵面的空气动力特性,形成围绕导弹质心的旋转矩,实现飞行姿态的改变。角位置控制分为3个通道,俯仰通道(控制俯仰角)、偏航通道(控制偏航角)、滚动通道(控制滚动角)。
3.1 舵机的PID控制
根据图2所示的舵机位置控制系统结构框图,其中电流环节采用电流计反馈,转速反馈用速测发电机,位置反馈用光电编码器。舵机采用三闭环控制设计,即电流环,转速环和位置环。可用“临界比例度法”初步确定PID参数。此方法适用于已知对象传递函数的场合,闭合的控制系统中将调节器置于纯比例作用下。从大到小逐渐改变调节器的比例度,得到等幅振荡的过渡过程。此时的比例度成为临界比例度δk,相邻两个波峰间的时间间隔称为临界振荡周期Tk,由此计算出各个参数,即Kp、Ti、Td的值。
3.2 纵向通道控制
传统的控制方案是将舵机简化为一个放大环节,系统仅存在角速度反馈,其纵向通道传递函数为:
式中,KM为传递系数,TM为时间常数,ξM为相对阻尼系数,T1为气动力常数。
在设计精确考虑舵机环节的纵向通道时,需加入PID校正环节,分析系统使其满足设计要求,图3为其控制系统结构框图。
3.3 横向通道控制
当滚动通道的输入指令为零时,即保持滚动角和角速度为零,则消除了俯仰通道和偏航通道的耦合作用,可分别控制3个通道。此时,对称结构导弹的俯仰通道和偏航通道的控制基本相同。
3.4 滚动通道控制
将舵机环节引入滚动通道,与纵向通道及航向通道类似,引入PID校正环节,分析系统,其角速度传递函数为:
式中,KMx为传递系数,TMx为倾斜时间常数。
用户评论
共 0 条评论