由于直接变频信号链上使用了IQ解调器,因此要精确地预测噪声指数的影响通常较为困难。一般使用噪声指数仪来测量噪声指数,然而,这种仪器不能在极低的频率下工作,因而无法在基带频率范围内捕获典型的噪声数据。一种可行的方法是使用校准噪声源和带前置放大输入的频谱分析仪对解调器中的噪声进行测量,该方法受限于频谱分析仪在基带频率上的灵敏度,在实际应用中,可以配合使用矢量信号分析技术来评估基带噪声。
本文将介绍在有干扰信号和无干扰信号的两种情况下,使用基带矢量信号分析仪测量IQ解调器噪声指数的一些基本技术。
背景
假定直接变频信号链如图1所示,如众多接收机一样,该设计在正交混频处理、信道选择和信号检测之前使用了一个频段可选的低噪声前端。这类似于一个真实的中频采样接收机,除了信号通过IQ解调器时,被分解成正交的两部分,这具有为初始IQ矢量(用于产生有用调制信号)提供直接输出的固有便利性,认识到该固有特性的存在有利于理解该正交混频处理及与其相关的复数运算。
假设RF输入信号由以下表达式给定:
RF(t)=USB•(cos(ω_{LO}+ω_{IF})t+LSB•sin(ω_{LO}-ω_{IF})t
这时,USB为随时间变化的上边带包络,而LSB为下边带包络。
当信号通过解调器内核时,它将与本振(LO)信号进行混频。将本振信号通过90°的移相器,既可以获得与其同相的分量(余弦),也可以得到与其正交的分量(正弦)。而将本振信号乘以RF信号,则会产生高频项和低频项,这时使用低通滤波器就可把信号的高频项过滤掉。该信号的定量关系与复频谱如图1所示。
如图所示,同相和正交分量均包含USB和LSB分量。如果同相信号经过希尔伯特变换,所有的负频率就会获得+90°相移,而正频率获得-90°相移。因此,当它们与正交分量相加时,USB信号就会被抵消掉,而只剩下LSB信号。同样地,我们可以对正交信号进行希尔伯特反变换,并将其与同相信号分量相加。这样,我们就可以获得USB信号,而抑制LSB信号,这就是镜频抑制的本质,显然,正交的精确度决定了抑制度的高低。应该注意的是,在正交求和网络之前,有用信号和镜像信号会发生重叠而造成上、下边带难以区分。
如果我们假设一个零中频条件(ωIF=0),就会发现可以很容易地在希尔伯特正交求和网络的输出端获得USB和LSB矢量。
如果初始信号为IQ正交调制信号,其由如下表达式给出:
RF(t)=I(t)•cosω_{LO}t+Q(t)•sinω_{LO}t
我们将会发现I、Q矢量在正交求和网络的输出端出现。因此,使用被调谐到载波频率的本振,IQ解调器就可以直接解调出IQ调制信号。
噪声的考虑因素
噪声指数(以分贝表示)用来度量信号通过有噪声的设备后,信噪比(SNR)的降低程度,即SNRINPUT/SNROUTPUT,或等于10log(F),这里F为噪声系数。在频率转换过程中,了解信号源中信号和噪声的混频过程尤为重要。一般噪声指数的测量是通过在噪声指数仪上,观察位于设备线性信号增益之上的噪声基底的上升情况。
在混频处理中呈现的问题表现为两个部分,测量不同频率上的输出噪声是首要任务,比测量输入端的源噪声更有必要,这需要对噪声接收机和噪声源进行仔细的校准。其次,传送到中频输出频率的噪声是上边带和下边带噪声的共同结果,称为双边带噪声指数测量。当检测图1中的希尔伯特网络前的数字信号时,该噪声会非常明显,注意在解调器输出端上、下边带的情况。
由于各边带的变频增益不一定相同,这将会令测量复杂化,而这时尝试预测单边带的噪声指数也会显得有点困难。实际当中,使用镜频抑制方案可有效消除来自无用边带(镜频)的噪声或干扰。而在宽广的可变频率范围内的测量,可能无法对单一边带的噪声指数实施测量,除非混频处理能提供足够的镜像抑制性能。
矢量信号分析
矢量信号分析是用于评估已调信号的调制精度的一种技术。大多数矢量信号分析仪(VSA)有基本的频谱分析功能,具备解调信号并报告该已调信号的各种信息的能力。然而已调信号可以使用调幅、调相或两者结合的调制方式。VSA是专为分析用于描述波形的信号矢量的精确度而设计的,而其通常被用来测量误差矢量。
通过测量各个传输码元的幅度和相位,VSA可以计算出被测矢量及其最邻近的理想星象点之间的误差矢量。为了确定理想星象图的坐标,首先必须为VSA指定合理的波形特性(诸如码元速率、脉冲成形滤波器规格和调制方式等)。如果误差矢量幅度(EVM)过大而使得VSA无法正确地消除预期的码元矢量,结果将会是有噪的且非常不可靠,在诸如高阶QAM调制等密集调制方案中类似情况尤为严重。
在时域采样系统中,EVM可以定义为:
EVM=sqrt{frac{sum_{k=1}^{M}|Z(k)-R(k)|^{2}}{sum_{k=1}^{M}|R(k)|^{2}}}
这里,Z(k)是复合接收信号矢量,它包括了同相(I)和正交(Q)两个部分;而R(k)是理想复合参考矢量。误差矢量幅度是衡量接收机性能好坏的一个测度标准,其等于误差矢量的RMS功率与参考矢量的RMS功率的比值。
如图2所示,相对于接收到的输入信号功率,接收机会呈现三个显著的EVM界限。由于接收机的非线性度,当信号电平较高时失真部分会落入带内,且EVM性能衰退会随着信号电平的增加而显著加剧。在中等信号电平范围内,接收机表现比较线性,而且信号远高于其它显著噪声成分。
EVM这时趋向于获得最佳的水平,而这主要由解调器的正交精度和测试设备的精度来决定。当信号电平减弱而噪声成为主要成分时,随着信号电平的下降EVM性能也将会有所衰退。在低信号电平下,噪声成为主要限制,EVM分贝值将会与SNR比值成正比。利用这个关系,有可能估算出接收机的输入参考噪声电平和计算出噪声指数。
解调器噪声指数的测量
图3描述的是利用VSA来实现解调器特性测量的配置。负责为测试设备(DUT)馈送输入信号的合成网络允许同时使用多个测试信号。而为了确定解调器输入端的绝对功率电平,需要对一直到隔离器和合成器的整个信号路径进行校准。该配置能够在多种阻塞情况下进行性能测试。
在强干扰条件下测量性能降低程度对分析工程师来说是一项非常大的挑战。强干扰情况即是指当邻近有强干扰源时,依然需要解调出微弱的有用信号。阻塞测试是各种蜂窝和点对点空中接口标准的通用要求。阻塞源可能来自于相同蜂窝半径范围内的其他无线终端,或者是邻近基站用作蜂窝小区识别的导频音。
直接变频接收机直到信号通过低噪声前端和IQ解调器后才具备信道选择特性。这迫使该前端和解调器能够处理所有信号电平的无用强干扰,同时还必须维持足够的灵敏度以成功恢复微弱的有用信号。在基带中,IQ信道选择滤波器经常用于衰减邻近的强干扰信号并传送有用信号到IQ数字化ADC。
为了在强干扰情况下确保适当的级联灵敏度,IQ解调器的噪声指数经常会吸引系统设计师的关注。该衰减必须是可测量且可控制的。频率转换器件在大信号激励情况下容易造成噪声指数性能的降低。因为在无用强干扰信号上,本振相位噪声会相互混频,因此这种情况只是局部性的。然而在时域里,混频器起到乘法器的作用,使本振的相位特性与强干扰信号发生卷积。
强干扰离有用信号越近,振荡器相位激起的一些能量越可能会在重要的信号频带内出现。另外一种机制还包括混频器内固有闪烁噪声的干扰调制。强干扰信号的RF牵力可导致在混频器内的晶体管结合处产生平方级的直流偏移。这个受制于直流偏移的信号电平可以重新偏置晶体管,并导致闪烁噪声特性出现变化和改变噪声指数性能直到0Hz。
VSA噪声校正
为了单独地获取解调器和基带VGA的噪声指数,有必要校正由测试设置产生的附加噪声。然而噪声分析主要受分析仪的灵敏度而非源端SNR的影响,因此有必要对分析仪的噪声影响单独进行适当校正。为了测量该VSA的影响,解调器采用强信号电平以确保基带VGA输出端处的SNR达到最佳。这与适用于该DUT的约-50dBm的平均输入电平相一致。
在DUT之后,VSA被插入20 dB衰减器以将信号电平降至略微埋入VSA噪声基底中,这就可以度量VSA对SNR所产生的影响。基于通过DUT的信号增益、测量到的SNR和所施加的输入电平,我们可以计算出分析仪的有效噪声密度。当施加-53dBm输入信号时,对应的EVM分贝值为20dB。
这与α因子为0.35的整形滤波器在1MHz调制带宽时使用500μV均方根输入电压的情形一致。这个包括多种频率的电压是结合1.35MHz分析带宽和431 nV/ Hz源信号密度的结果。解调器和基带放大器的总增益达到了25 dB,而由于施加了输出衰减器,其后将会有约20 dB的衰减。
因此加到I/Q输入端口的信号强度比加到解调器输入的电平大约高5dB,也因此致使EVM值为20dB。请注意,没有衰减器时的EVM性能要好得多,这说明衰减器的确是将信号电平降低到了足以使VSA输入灵敏度对系统起主导限制作用的程度了。该测量说明,VSA输入的噪声密度必须低于所加信号密度20dB以上。建议的VSA输入为~77 nV/ Hz。
总结
结合使用图4中的测量数据和计算得到的VSA输入噪声,就有可能计算出DUT的有效噪声指数。在没有强干扰条件下对有用信号的输入功率进行扫描,输入电平为-71 dBm时,对应的EVM值约为20dB。这是在1.35 MHz分析带宽上测量所得的结果。通过这种测量方法,我们可以预测出-91dBm输入电平对应的SNR为0dB,建议使用-152.3dBm/Hz的输入功率密度。
输入到50Ω的阻抗时,电压密度为5.4nV/Hz。该噪声的一部分是由于VSA噪声引起的。而VSA引起的输入参考噪声则为4.3nV/ Hz。如果我们记住总噪声电平是DUT噪声与测试设备噪声的矢量和,就能够发现来自DUT的噪声为3.3 nV/ Hz。而对于50Ω阻抗,噪声指数为17.3dB。相同的计算方法也用在了零中频和5MHz低中频测试条件下存在强干扰和没有强干扰的情况中。
表1对比了VSA测量方法与传统Y-因子测量方法的测量性能。值得注意的是,Y-因子测量方法不适用于零中频情况,因为其所用的测试设备不能在0 Hz提供足够的灵敏度。通过比较证明了VSA测试方法是一种面向基带解调器噪声指数评估的合适的定性解决方案。对于测试台和调试来说,这是一个非常有用的测试工具。不过,当信号电平较小时,其测量方差显得过大,不适合用来对产品特性进行定量。
编辑:jq
-
解调器
+关注
关注
0文章
309浏览量
26301 -
usb
+关注
关注
60文章
8075浏览量
270178 -
变频
+关注
关注
1文章
451浏览量
34311 -
LO
+关注
关注
0文章
29浏览量
39194 -
LSB
+关注
关注
0文章
39浏览量
13420
发布评论请先 登录
LT5516 800MHz至1.5GHz直接转换正交解调器技术手册

LT5515 1.5GHz至2.5GHz直接转换正交解调器技术手册

LT5517 40MHz至900MHz正交解调器技术手册

AD8347 800MHz至2.7 GHz RF/IF正交解调器技术手册

MAX2021高线性度、低噪声、1GHz ZIF调制器/解调器技术手册

AD8348 50MHz 至1,000MHz正交解调器技术手册

ADL5387 30MHz至2GHz 正交解调器技术手册

ADL5382 700~2700MHz正交解调器技术手册

ADL5380 400MHz至6000MHz正交解调器技术手册

调制解调器的配置与调试
如何提升调制解调器的信号强度
使用调制解调器的注意事项
调制解调器的工作原理 如何选择调制解调器
调制解调器和路由器的区别

射频干簧继电器的产品特性、优势及解决的痛点
长期以来,干簧继电器以其在切换和传输射频信号以及快速数字脉冲方面的出色性能而备受认可。然而,由于干簧管的引线通常由镍铁合金制成,这种材料的磁导率(µ)相对较高,因此人们普遍认为干簧继电器难以实现高达20GHz的射频信号切换与传输。如今,斯丹麦德电子成功突破了这一技术瓶颈。射频干簧继电器特性和优势产品特性高频应用限制:突破传统材料的限制,实现高达20GHz的高

TurMass™ 传输技术:赋能输变电物联网监测的核心引擎
随着新型电力系统建设持续推进,TurMass™ 技术凭借穿透性强、抗干扰优、安全性高等特点,已在变电站设备监测、山区线路防护、输电线路远程巡检等多个场景形成成熟的应用方案。其"精准感知、可靠传输、智能管控"的技术特性,正成为推动电网设备数字化改造的关键通信基座,为构建本质安全的智能输变电体系提供了可复制的技术路径。

ElfBoard技术实战|ELF 2开发板本地部署DeepSeek大模型的完整指南
ELF 2开发板本地部署DeepSeek大模型的完整指南

【H桥电机驱动电路原理】-学习笔记
工作原理电路分析这是一个由晶体管构成的H桥电机驱动电路,以下是对其各部分的介绍:核心器件晶体管:电路中使用了PNP型的SS8550(Q5、Q6)和NPN型的SS8050(Q9、Q10、Q13、Q14)。通过不同晶体管的导通与截止组合,实现电机两端电压极性的切换,进而控制电机正反转。比如,当Q5和Q10导通,Q6和Q9截止时,电流从MotorL+流入电机,从M

ATA-2041高压放大器在CFRP板分层缺陷的空耦超声原位测量中的应用
前言空气耦合超声波技术,作为一种高效且无损的检测方法,近年来在工业领域受到了广泛关注。其独特之处在于利用空气作为耦合介质,无需与被测物体直接接触,即可实现高精度的检测与成像。它能够检测在用CFRP板中的缺陷确保其应用安全,但传统的空气耦合超声方法通常依赖于线性缺陷指数在表征小尺寸缺陷方面无效。此外扫描步长完全限制了它们的成像空间分辨率,导致成像空间分辨率与检

TwinCAT3 EtherCAT抓包 | 技术集结
在使用TwinCAT测试EtherCATEOE功能时,我们会发现正常是无法使用Wireshark去进行网络抓包抓取EtherCAT报文的,今天这篇文章就带大家来上手EtherCAT抓包方式。准备环境硬件环境:EtherKit开发板网线一根Type-CUSB线一根软件环境TwinCAT3RT-ThreadstudiowiresharkEtherCATEOE工程

EtherCAT科普系列(8):EtherCAT技术在机器视觉领域的应用
机器视觉是基于软件与硬件的组合,通过光学装置和非接触式的传感器自动地接受一个真实物体的图像,并利用软件算法处理图像以获得所需信息或用于控制机器人运动的装置。机器视觉可以赋予机器人及自动化设备获取外界信息并认知处理的能力。机器视觉系统内包含光学成像系统,可以作为自动化设备的视觉器官实现信息的输入,并借助视觉控制器代替人脑实现信息的处理与输出。从而实现赋予自动化

新品 | 26+6TOPS强悍算力!飞凌嵌入式FCU3501嵌入式控制单元发布
飞凌嵌入式FCU3501嵌入式控制单元基于瑞芯微RK3588处理器开发设计,4xCortex-A76+4xCortex-A55架构,A76主频高达2.4GHz,A55核主频高达1.8GHz,支持8K编解码,NPU算力6TOPS,支持算力卡拓展,可以插装Hailo-8 26TOPS M.2算力卡。

接口核心板必选 | 视美泰AIoT-3568SC 、 AIoT-3576SC:小身材大能量,轻松应对多场景设备扩展需求!
在智能硬件领域,「适配」是绕不开的关键词。无论是小屏设备的”寸土寸金”,还是模具开发的巨额成本,亦或是多产品线兼容的复杂需求,开发者总在寻找一款能「以不变应万变」的核心解决方案。视美泰旗下的AIoT-3568SC与AIoT-3576SC接口核心板系列,可以说是专为高灵活适配场景而生!无需为设备尺寸、模具限制或产品线差异妥协,一块核心板,即可释放无限可能。为什

3核A7+单核M0多核异构,米尔全新低功耗RK3506核心板发布
近日,米尔电子发布MYC-YR3506核心板和开发板,基于国产新一代入门级工业处理器瑞芯微RK3506,这款芯片采用三核Cortex-A7+单核Cortex-M0多核异构设计,不仅拥有丰富的工业接口、低功耗设计,还具备低延时和高实时性的特点。核心板提供RK3506B/RK3506J、商业级/工业级、512MB/256MBLPDDR3L、8GBeMMC/256

搭建树莓派网络监控系统:顶级工具与技术终极指南!
树莓派网络监控系统是一种经济高效且功能多样的解决方案,可用于监控网络性能、流量及整体运行状况。借助树莓派,我们可以搭建一个网络监控系统,实时洞察网络活动,从而帮助识别问题、优化性能并确保网络安全。安装树莓派网络监控系统有诸多益处。树莓派具备以太网接口,还内置了Wi-Fi功能,拥有足够的计算能力和内存,能够在Linux或Windows系统上运行。因此,那些为L

STM32驱动SD NAND(贴片式SD卡)全测试:GSR手环生物数据存储的擦写寿命与速度实测
在智能皮电手环及数据存储技术不断迭代的当下,主控 MCU STM32H750 与存储 SD NAND MKDV4GIL-AST 的强强联合,正引领行业进入全新发展阶段。二者凭借低功耗、高速读写与卓越稳定性的深度融合,以及高容量低成本的突出优势,成为大规模生产场景下极具竞争力的数据存储解决方案。

芯对话 | CBM16AD125Q这款ADC如何让我的性能翻倍?
综述在当今数字化时代,模数转换器(ADC)作为连接模拟世界与数字系统的关键桥梁,其技术发展对众多行业有着深远影响。从通信领域追求更高的数据传输速率与质量,到医疗影像领域渴望更精准的疾病诊断,再到工业控制领域需要适应复杂恶劣环境的稳定信号处理,ADC的性能提升成为推动这些行业进步的重要因素。行业现状分析在通信行业,5G乃至未来6G的发展,对基站信号处理提出了极

史上最全面解析:开关电源各功能电路
01开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。开关电源的电路组成方框图如下:02输入电路的原理及常见电路1AC输入整流滤波电路原理①防雷电路:当有雷击,产生高压经电网导入电源时

有几种电平转换电路,适用于不同的场景
一.起因一般在消费电路的元器件之间,不同的器件IO的电压是不同的,常规的有5V,3.3V,1.8V等。当器件的IO电压一样的时候,比如都是5V,都是3.3V,那么其之间可以直接通讯,比如拉中断,I2Cdata/clk脚双方直接通讯等。当器件的IO电压不一样的时候,就需要进行电平转换,不然无法实现高低电平的变化。二.电平转换电路常见的有几种电平转换电路,适用于
评论